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Abstract. In 2015, John Brockman edited a volume of
chapters contributed by leading thinkers from various do-
mains discussing common scientific ideas hindering fur-
ther scientific progress. While starting with the provoca-
tive slogan of This Idea Must Die, the book’s chapters and
their authors (for most parts) do not argue that those ex-
isting – often foundational scientific theories from various
domains – are false, but instead that their widespread, and
often unquestioned, utilization has started to hinder the
evolution of new theories. Through this work, we would
like to foster a similar discussion in our community, by
suggesting six ideas in GIScience/geoinformatics that may
benefit from retiring to make room for new perspectives.
Our suggestions are somewhat controversial, and readers
are encouraged to keep an open mind.
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1 Introduction

According to the Planck principle, science progresses one
funeral at a time.1 While this is often interpreted as a
statement about people, it may as well be a metonymy
for scientific ideas and theories put forward and defended
by those people. So what makes such ideas overstay their
welcome? For instance, statistical significance testing is a
commonly used example of an extensively used and ben-
eficial method, that is considered less favorable now due
to several adverse effects of its practical application in
science (Carver, 1978, 1993; Johnson, 1999; Brockman,
2015). The key arguments made are not that significance
testing is wrong, but that effect size is often not consid-

1Based on Planck (1950).

ered, that experiments are tailored to yield low p-values,
and that overuse of one method starts to suppress alter-
natives and even holds back scientific results that do not
fit one specific style of research design. Similarly, the no-
tion of stationarity (in time and space), while a very useful
simplification for modeling, is unlikely to be the norm but
rather an exception as far as processes on the Earth’s sur-
face, and even more of human behavior, are actually con-
cerned (Brockman, 2015; Verstegen et al., 2016; Zhu et al.,
2019).

To generalize from these examples, we aregue that scien-
tific ideas and theories may become a burden for future
progress for some of the following reasons:

• A method (or scientific paradigm) becomes so dom-
inant that it leaves no room for alternative meth-
ods, or impacts what type of work is published in
the first place. The aforementioned statistical signifi-
cance testing is such an example (Brockman, 2015).

• A method (or dataset) becomes widely used to a de-
gree where research is tailored specifically towards
yielding the best evaluation results under this method
or dataset, essentially leading to over-fitting. Free-
base (FB15k) and ImageNet may be such dataset ex-
amples for knowledge graph (Bordes et al., 2013) and
computer vision research (Deng et al., 2009), respec-
tively. Similarly, for several years, Recurrent Neural
Networks used to be a must-have for dealing with se-
quential data (such as time series), and studies often
did not consider alternative methods that are perhaps
simpler and less prone to over-fitting.

• A key notion becomes redefined and broadened over
time to a degree where its usage does not clarify but
leads to confusion. Feature and its widely different
usage within and across domains is such an exam-
ple within GIScience and computer science research.
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Concept is another example, particularly in the do-
main of Cognitive Science.

• Software and workflows supporting a certain technol-
ogy/method may be so broadly available and adapted
that new (and perhaps superior) methods do not find
wide application. For instance, analytical methods
provided by ArcGIS toolboxes, such as the Spatial
Statistics toolbox and the Geoprocessing toolbox,
mainly implement traditional pairwise and distance-
based methods (e.g., Moran’s I), leading to an under-
representation of higher-order spatial interactions and
directional effects (Zhu et al., 2017, 2019). Similar
arguments can be made about clustering techniques
beyond DBSCAN.2

• Long-held assumptions about what defines a research
field may hinder interdisciplinarity or a broadening of
scope. For instance, we will question whether mod-
ern GIScience is still a bridge-building discipline re-
quired to connect domain scientists with computa-
tional methods.

In this work, we would like to initiate a discussion about
these issues. More specifically, we suggest six ideas in GI-
Science/geoinformatics that may benefit from retiring to
make room for new perspectives.

Concretely, in Section 2, we first question the fundamental
dominance of geometry-first representation and analysis
of geographic information. Next, we discuss three popu-
lar research topics and concepts that have dominated GI-
Science research for years: Place (Section 3), Volunteered
Geographic Information (Section 4), and purely data-
driven GeoAI (Section 5). In Sections 6 and 7, we ques-
tion the assumption that GIScience is a bridge-building
discipline and, therefore, interdisciplinary by definition.
Finally, we discuss the risk of constantly creating geo-
specific sub-fields of emerging trends.

Ultimately, the goal of our work is not to argue that an
idea must truly die, but to spark a discussion among our
community that allows us to revisit some key assumptions
that we have left unquestioned for years and even decades.

2 Geometry First

Together with time and theme, location has been regarded
as an imperative dimension composing the atomic rep-
resentation of geographic information (Goodchild et al.,
2007). In fact, it is the concept of location that makes geo-
graphic representation, as well as its following analysis,
special when compared to other non-spatial representa-
tions (Anselin, 1989).

Location is intrinsically a relation rather than a property
(Kuhn, 2012), so a reference system must be used to locate

2Although one could argue here that the delta is not sufficient
to justify the implementation of other algorithms.

an entity (Bittner, 1997). Humans use multiple ways to
describe and communicate locations, including referring
to addresses, directions, topology (in terms of relations to
other locations), place names, natural language descrip-
tions, or absolute coordinates, among other possibilities.
All these approaches have either an intrinsic or extrinsic
frame of reference (Clementini, 2013).

Despite such a diverse range of representations, the pres-
ence of a concrete geometry (be it point, line, or polygon-
based) together with a formal reference system is a nec-
essary first step for data loading, entry, and analysis in
GIS. For instance, modern GIS still lack the ability to
load geographic data based on topological or directional
information alone, e.g., the fact that two geographic fea-
tures are adjacent. Moreover, geometry-first spatial anal-
ysis and modeling has received almost all attention aside
from some initial research on place-based GIS (Gao et al.,
2013). For example, classics such as Kriging (Cressie,
1990), Getis–Ord Gi (Getis and Ord, 2010), and Geary’s
C (Geary, 1954), are all derived from geometric relations
(distance and/or direction) between geographic entities.
Such an observation can be attributed to the historical root
of GIS and GIScience in thematic cartography (McHarg
et al., 1969; Clarke, 1999), whose focus was on projection
so as to visualize geographic entities and phenomena in a
plane. Put differently, GIS starts with a geometric descrip-
tion of the world and then typically asks questions about:

• the location of features;

• the patterns multiple features form, for instance
(based on) their distribution;

• How (non-spatial) attributes vary by location;

• and, how (non-spatial) attributes vary by inter-feature
distance.

There are, of course, many reasons to do so, e.g., when
studying the absolute distribution of crime spots in urban
spaces or estimating the presence of ore deposits.

While qualitative and approximate means of represent-
ing and measuring location (Frank, 1992; Freksa, 1991;
Egenhofer and Mark, 1995) have been well studied and
formalized in fields related to (spatial) cognition, Artifi-
cial Intelligence (AI), decision-making, economics, and so
on, they often play a secondary role in typical GIS work-
flows, e.g., when defining topological constraints on geo-
databases. Put differently, a GIS workflow can consist of
loading a vector layer of concrete urban neighborhoods
(i.e., their geometries) and then asking whether adjacent
neighborhoods show similar crime patterns. However, ask-
ing if offenders typically commit crimes within their own
neighborhood or across neighborhoods, without specify-
ing where on the Earth’s surface these neighborhoods are
located, is not possible. While this may seem a small issue,
it substantially hinders the utilization of GIS for simula-
tions and forecasts that do not rely on absolute geometry.



The ongoing COVID-19 pandemic is a prime example for
the aforementioned limitation. Questions such as the effi-
ciency of masking, stay-at-home orders, effects of popu-
lation density, place-type based restrictions (e.g., wrt. din-
ing), and so on, cannot be modeled in a classical GIS just
based on non-spatial attributes and topology, but always
requiring an absolute reference frame in addition. Simply
put, we currently cannot ask about the spread of COVID
as it relates to the everyday trajectories and visited place
types, without the absolute location (Shaw and Sui, 2020)
of these trajectories and the places people visited, despite
them being irrelevant for the task at hand.

In addition, with an ever-growing availability of social
sensing (Liu et al., 2015; Janowicz et al., 2019), hetero-
geneous data across multiple media can now be easily col-
lected, which record almost all aspects of human interac-
tion with the surrounding geographic space. Not surpris-
ingly, a large portion of such socially-sensed data is in fact
qualitative (e.g., textual descriptions of a city configura-
tion). The lack of effective tools to process such qualitative
geographic information, consequently, poses a challenge
for us to tackle as a community.

Yet another example comes from the digital geo-
humanities (Grossner et al., 2017) where researchers are
interested in studying, visualizing, and documenting his-
toric itineraries or trade routes, in most cases without be-
ing able to provide geometries for them.

Summing up, while geometry certainly matters greatly for
GIS and GIScience, geometry-first has restricted the usage
of many of our methods and tools, and has also slowed
down progress in research on place-based GIS (Gao et al.,
2013; Papadakis and Blaschke, 2017). 3

3 Humanistic Concepts of Place are Sacrosanct

Place is among the key notions that define the field of (hu-
man) geography. Historically, it has been explored within
the purview of humanistic and cognitive geographers, as
well as critical theorists. Seminal work by authors such as
Yi-Fu Tuan (1977; 1975) and Tim Cresswell (2014) are
often the first to be referenced in any discussion about
place (e.g., Blaschke et al. (2018), Zhang et al. (2020),
and Brown et al. (2020)). The GIScience community stud-
ies the representation of place and, hence, it looks upon
this body of work with a combination of reverence and ap-
prehension. Humanistic geographers (Tuan, 2017) tend to
write on the topic of place in a language that is descriptive,
yet most often not formal in a way that would facilitate the
computational representation of the concept of place.

As a discipline of quantitative scientists, we appear to have
concluded, either through interpretation of these writings

3Interestingly, one of the anonymous reviewers pointed out
that the argument could also go the other way around and it is
the place-based researchers that should develop suitable tools for
their needs, instead of blaming GIS for their design.

or by being explicitly told as much, that place is an excep-
tionally complex concept that cannot be formally repre-
sented in a computer with sufficient accuracy and/or detail.
In the past, GI scientists have viewed this as a challenge,
which has led to a plethora of publications aimed at com-
putationally modeling place in one way or another. Geog-
raphers and information scientists have been approaching
the topic of place from a quantitative perspective for at
least the past decade (Tang and Painho, 2021; Goodchild
and Li, 2011; Scheider and Janowicz, 2014), and arguably
longer (Harrison and Dourish, 1996; Winter et al., 2009).
Paradoxically, at the same time, we have continued to hold
onto the notion that place is unquantifiable (Golledge and
Stimson, 1997), and that holistically modeling place com-
putationally is an insurmountable task.

Here, we argue that this impossibility does not truly hold,
and that a large body of work now exists in which re-
searchers have successfully modeled place in order to ac-
complish a range of tasks, e.g., human movement simula-
tion, place recommendation, or similarity assessment (see
Purves et al. (2019) for an overview).

The reality is that place is an abstract concept that means
different things to different people. However, this does not
mean that one cannot select their definition of place, state
their assumptions, and go about developing and testing
empirical, theoretical, and/or simulated models of place.
In order to push forward and truly embed place-based re-
search within spatial data science, we must move past the
purely humanistic definitions of place, and take ownership
of the concept within our field.

This is even more important for modern, interdisciplinary
research. If we, as a community, refuse to make formal
place representations (Casati et al., 1999) available to all,
and tell them apart from purely location-based approaches,
others will either not be able to utilize our work or borrow
from our neighboring disciplines that readily provide def-
initions and models of place (even though we often con-
sider those to be reductionist). Put differently, no science
can rest on the assumption that its key notions are too
complex to be understood by other domains and too multi-
faceted to be captured computationally.

4 All User-Generated Content is VGI

In late 2007, Goodchild (2007) published a paper in which
he coined the term Volunteered Geographic Information
(VGI). While the concept of VGI had existed in GIScience
research prior to this work, applying the label of VGI in-
creased interest in the topic, and led to the organization of
a community of researchers interested in exploring and us-
ing data contributed by citizen sensors (Silvertown, 2009).

In his work, Goodchild explicitly stated that VGI is “...a
special case of the more general Web phenomenon of user-
generated content...” The growth of research in this area,
combined with the dramatic increase in social media plat-



forms, mobile devices, the internet of things, and context-
aware technologies, has led to VGI now being used to de-
scribe a large subset of user-generated content, including
(involuntary) data traces.

We argue here that much of the content being analyzed
today within GIScience research is erroneously being la-
beled as VGI (Horita et al., 2013; Bakillah et al., 2014).
In order to understand how and why this has changed, we
need to pull apart the term volunteered geographic infor-
mation, as well as the context in which the term is em-
ployed. Take, for example, the now common place activity
of “checking in” to a place through a social media appli-
cation, or reviewing a restaurant on a platform like Yelp4

or Foursquare5. These are arguably not voluntarily con-
tributed for the sake of analyzing geographic information,
but instead simply user-generated content that includes ge-
ographic attributes. The distinction is important. We make
the argument that 1) volunteered geographic information
is content that is actively volunteered by a user, and 2)
the primary purpose of sharing VGI data is to share ge-
ographic content. In fact, most geotagged contributions to
social media applications today are not VGI, in that the ge-
ographic information is secondary to the primary purpose
of sharing the data, namely posting a photo or a video,
personal fitness tracking, etc. (McKenzie and Janowicz,
2014). Second, many online platforms today, while seem-
ingly voluntary, have been socially engineered to remove
choices and promote particular behaviour (Hou et al.,
2019). To a teenager, the pressure to engage through online
social platforms is conceivably not voluntary. Businesses,
government agencies, and even schools are increasingly
moving to for-profit online platforms, requiring citizens to
not-so-voluntarily contribute data to these systems. Sim-
ilarly, past GIScience research has utilized social media
postings, e.g., from Twitter or Flickr, together with their
explicit or inferred location information for inferences,
e.g., about health, walkability, crime, sentiment, and so on.
Clearly, such messages are not VGI, and the users of these
platforms are not aware of the fact that their contents end
up in datasets and papers, even if in aggregated form. The
same argument can be made for data traces more broadly
(e.g., tracking people using Wifi and IP-based techniques).

To be clear, VGI remains an important form of data, with a
thriving community of researchers that are using these data
and exploring the motivation for such voluntary contribu-
tions (Yan et al., 2020; Ballatore and Zipf, 2015; Ballatore
et al., 2013). It is important, however, that as shepherds of
the term VGI, we do not fall victim to painting all man-
ner of user-generated content with this brush. This does
us, and the broader scientific community, a disservice. Our
suggestion is that in working with user-generated content,
we make sure to be explicit as to when our data meets the
criteria of 1) being volunteered, and 2) with geographic
content being the primary attribute. This is particularly im-

4https://www.yelp.com/dataset
5https://developer.foursquare.com/

portant in a time of increasing awareness for privacy and
misinformation.

5 Purely Data Driven GeoAI

While modern data-driven methods and Artificial Intelli-
gence (AI) have opened up countless interesting opportu-
nities within GIScience, they have also led to the emer-
gence of a mindset that can perhaps be described as AI so-
lutionism (Morozov, 2013). This corresponds to the idea
that, given enough data, machine learning algorithms can
directly solve almost all problems. We argue that there are
many pitfalls associated to this idea. Instead of support-
ing progress within GIScience, it actually diminishes the
important scientific contributions that have been advanced
by our community, and contributes to setting unrealistic
expectations about what can be accomplished and about
the future of insight, more broadly.

While the intersection of AI and GIScience has a long
history (Smith, 1984; Couclelis, 1986; Openshaw and
Openshaw, 1997), recent developments associated to deep
learning have led to a wave of enthusiasm and in-
creased interest, initially in tasks related to remote sens-
ing and earth observation, but quickly also embracing
other problems. Communities around the topic of Geospa-
tial Artificial Intelligence (GeoAI) were quickly estab-
lished (Janowicz et al., 2020), and researchers have, in
fact, put forward interesting contributions relating to why
spatial is special in AI, or relating to problems that we can
now address better through the use of AI rather than more
traditional approaches (Mac Aodha et al., 2019; Yan et al.,
2019; Wang and Li, 2021; Mai et al., 2020).

Nonetheless, it is important to keep in mind the limita-
tions within state-of-the-art data-driven methods, many of
which will only be resolved through new discoveries. The
unreasonable effectiveness of deep learning (Sejnowski,
2020), and other important concerns (such as interpretabil-
ity and explainability (Xing and Sieber, 2021)) regarding
these methods, are shared with varying degrees of inten-
sity by most leaders in the field of AI (Samek et al., 2019;
Arrieta et al., 2020).

According to deep learning skeptics such as Gary Mar-
cus (2018), these methods are greedy, brittle, opaque, and
shallow. In brief, deep learning is greedy because it fre-
quently demands huge sets of training data for supervised
training, at the same time performing sub-optimally at the
long tail. They are brittle because when a neural network
is given a transfer test (i.e., when the network is con-
fronted with scenarios that differ from the examples used
in training, such as remote sensing imagery from differ-
ent areas or collected with different environmental con-
ditions), they cannot contextualize the situation and fre-
quently yield results with low accuracy. They are opaque
because, unlike traditional approaches following formal
rules and computations defined explicitly, the parame-
ters of neural networks can only be interpreted in terms

https://www.yelp.com/dataset
https://developer.foursquare.com/


of their weights. Consequently, these methods are black
boxes, whose outputs cannot be properly explained, rais-
ing doubts about their reliability and biases. Finally, they
are shallow because they are programmed with little in-
nate domain knowledge. Neural networks are limited to
encoding correlations in the data, instead of causation or
ontological relationships (which have been studied in GI-
Science extensively (Frank, 1997; Kuhn, 2005)), and they
are not well suited for high-level reasoning or planning
with data (e.g., causal reasoning).

Syncretism can contribute to addressing these limitations.
In particular, GIScience contributions related to modeling
spatial dependence or issues involving scales, can bring
forth benefits if injected as additional information within
machine learning methods. Practitioners have shown that
such domain theory-informed methods (e.g., taking into
account domain theory as constraints, e.g. in the form of
model regularization strategies, at training) can accelerate
model training or improve accuracy, especially when su-
pervised data is scarce. However, a widely ignored fact is
that space is not only dependent but also heterogeneous.
Most existing ML models (referred to as global models)
only consider spatial dependence across space, but neglect
local variations. Consequently, such models cannot per-
form well locally, or be transferred to study similar prob-
lems in other regions.

Rather than directly applying deep learning methods ad-
vanced in areas like computer vision, with minor adjust-
ments, GIScience should carefully consider how to best
combine its key principles together with these methods in
terms of various geographical problems. For instance, with
regard to the aforementioned global models, we advocate
developing local models, so as to take into consideration
local variations and increase the generability of ML mod-
els when applied to geographical problems. Moreover, in-
stead of respecting model size and complexity just for their
sake, the field should embrace the idea that not all spa-
tial analysis will require heavy-duty deep learning models.
In fact, using more lightweight models (e.g., ensembles
of decision trees, especially if combined with appropriate
methods for introducing spatial features) can often reduce
some of the aforementioned bottlenecks.

6 Building Bridges

GIScience is an application-independent discipline which
develops methods and models for handling (geo)spatial
and temporal data. These models and methods are then
employed in application domains to find solutions to
domain-specific problems. In such exercises, the GI sci-
entist has traditionally fulfilled a bridge function, bringing
the methods to the application domain. While the GI sci-
entists are naturally familiar with one end of the bridge,
e.g., the methods, it is nearly impossible for them to be
completely familiar with the other end, i.e., every possi-

ble application domain. Yet, detailed domain knowledge
is essential to a variety of activities:

1. Sensibly apply methods, e.g. to select parameters like
the movement speed of particular agents within spa-
tial simulation models. Put differently, to connect
these methods to the (geographic) context of the ap-
plication (Dodge, 2016).

2. Interpret and explain results or solutions, e.g., to un-
derstand the reason that a certain factor received high
importance in a statistical model (Gahegan, 2020).

3. Develop models that challenge existing theories,
which may be considered as the most useful aspect of
modelling (Oreskes et al., 1994), or even to discover
new theories.

These examples illustrate that GI scientists need expertise
from application domains. Still, how much expertise do we
need, and what degree of familiarity with computational
methods can we expect from the subject matter experts we
are supposed to support with our research?

In practice, the idea that GIScience is a bridge-building
discipline may have overstayed its welcome. On the one
hand, GI scientists publish domain research, e.g., about
biodiversity, health, the effectiveness of state mandated
COVID measures, and so on, without explicit external do-
main experts on their teams. On the other hand, these ex-
perts are utilizing our advances, and other computational
methods, and are increasingly developing such methods
themselves given the wide range of existing software li-
braries to support them.

This puts us back into a situation that we tried to overcome
two decades ago with the creation of GIScience on top
of GIS, namely being no longer perceived as mere tool-
builders. One suggestion would be to focus more of our
work on studying the geographic information universe as
such (Adams et al., 2014; Janowicz et al., 2014; Miller,
2017). Another solution may be to become even more
domain-independent, and broaden our work towards spa-
tial data science. For instance, currently, a rapidly growing
body of work on spatially-explicit machine learning mod-
els has been widely used in various applications and across
many domains, ranging from health (Kamel Boulos et al.,
2019) to ecology (Meyer and Pebesma, 2022). Finally, a
third approach may be to integrate ourselves closer with
domain experts and to build expertise in concrete domain
topics, thereby abandoning the bridge position (and partic-
ularly avoiding ‘one-sided’ bridges).

Put more provocatively, GIScience should develop
domain-independent methods, but not engage in domain-
agnostic applications.



7 Spatial is so Special that it is Best Served with
Highly Specialized Research Communities

Even within highly specialized research areas one is likely
to find numerous sub-specialties. In different fields of
study, we have seen an increasing trend towards consid-
ering that spatial data calls for special techniques, for in-
stance reflected on specialized workshops (e.g., GeoKG &
GeoAI 2021 in GIScience6, or GeoAI in SIGSPATIAL7),
conferences, journals, and special interest groups within
scientific societies and professional organizations. Within
GIScience, increased attention is also being given to the
specificities of different application areas. Topics like
geospatial humanities, geospatial artificial intelligence,
geographic information retrieval, geographic knowledge
graphs, or geospatial big data, are but a few recent exam-
ples of these trends.

While understandable and not without merit (e.g., the im-
portance of appropriately modeling spatial dependence,
spatial heterogeneity, or scale, is being highlighted within
different types of problems), we argue that an excessive
geo-labeling (referred to as GeoX) can contribute to creat-
ing micro-communities, which may be difficult to develop
and sustain and may lead to undesired insularity problems.
The aforementioned trends can have profound impacts on
the ability to broadly generalize research findings, and on
the degree to which research can be thought to inform the
practice and theoretical development of other individuals
outside the hyper-specialized areas.

While space is indeed special, GIScience should strive
to have broadly shared research agendas, commonly ap-
plied methodologies, stable and agreed upon dissemina-
tion channels, and shared paradigms. The idea of avoiding
the proliferation of micro-communities is also not incom-
patible with further involving domain experts in GIScience
research. Ideally, domain experts should be involved as
collaborators within the mainstream research taking place
in GIScience. Their contributions should be visible at the
main GIScience fora, rather than being delegated to hyper-
specialized workshops.

Put differently, while creating our GeoX sub-fields can be
important for community building, training, raising aware-
ness, and securing research funding, it is important to en-
sure outreach of our ideas into their respective upstream
communities. Otherwise our impact will remain small and
instead of innovating, we will be relegated to applying
lessons learned from other fields.

8 Conclusions

Starting with the observation that scientific theories must
occasionally make room for new ones, we suggested six
popular ideas in GIScience that may benefit from retiring

6https://ling-cai.github.io/GIScience-GeoKG/
7https://geoai.ornl.gov/acmsigspatial-geoai/2021-2/

(or at least rethinking) to make room for new ideas and
perspectives. Among these ideas are prominent notions
such as place and more specifically the idea that place can-
not be successfully formalized, as well as the unquestioned
usage of VGI as a term for data traces more broadly. In or-
der to spark a discussion within the community, we illus-
trated how and why these six ideas may hinder progress.
For instance, we questioned the default workflow of GIS,
whereby every feature needs to have an associated geome-
try defined within an absolute reference system. We realize
that this list is not conclusive and that other authors may
have added some and discarded other ideas. Just as with
Brockman’s original book, we do not aim at consensus, but
are interested in seeing arguments brought forward in sup-
port of retaining or retiring those six and many other ideas,
in order to ultimately understand which core concepts GI-
Science should carry forward during the next decade.

9 Data and Software Availability

This paper has no directly associated data or software. Rel-
evant data/software are described in the referenced papers.
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