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Abstract. Driven by foundation models, recent progress
in AI and machine learning has reached unprecedented
complexity. For instance, the GPT-3 language model con-
sists of 175 billion parameters and a training-data size of
570 GB. While it has achieved remarkable performance in
generating text that is difficult to distinguish from human-
authored content, a single training of the model is esti-
mated to produce over 550 metric tons of CO2 emissions.
Likewise, we see advances in GeoAI research improving
large-scale prediction tasks like satellite image classifica-
tion and global climate modeling, to name but a couple.
While these models have not yet reached comparable com-
plexity and emissions levels, spatio-temporal models dif-
fer from language and image-generation models in sev-
eral ways that make it necessary to (re)train them more
often, with potentially large implications for sustainabil-
ity. While recent work in the machine learning community
has started calling for greener and more energy-efficient
AI alongside improvements in model accuracy, this trend
has not yet reached the GeoAI community at large. In
this work, we bring this issue to not only the attention
of the GeoAI community but also present ethical consid-
erations from a geographic perspective that are missing
from the broader, ongoing AI-sustainability discussion. To
start this discussion, we propose a framework to evaluate
models from several sustainability-related angles, includ-
ing energy efficiency, carbon intensity, transparency, and
social implications. We encourage future AI/GeoAI work
to acknowledge its environmental impact as a step towards
a more resource-conscious society. Similar to the current
push for reproducibility, future publications should also re-
port the energy/carbon costs of improvements over prior
work.

Keywords. GeoAI Ethics, AI Sustainability, Carbon
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1 Introduction

The increasing availability of powerful hardware, such as
GPUs and TPUs, has enabled the scaling of many com-
putationally intensive tasks including training deep neu-
ral networks. With more capabilities and higher accuracy,
recent machine learning models have seen an enormous
increase in complexity compared to those developed a
decade ago. For instance, large language models, such
as GPT-3 (Brown et al., 2020) and PaLM (Wei et al.,
2022), have hundreds of billions of parameters. The ever-
increasing training and serving costs—in money, energy,
and greenhouse gas (GHG) emissions—have raised con-
cerns within the machine learning community. For ex-
ample, the carbon cost of just training a BERT language
model on GPUs without hyperparameter tuning is compa-
rable to a trans-American flight (Strubell et al., 2019).

As machine learning becomes an invaluable tool in large-
scale data analysis, we see a similar trend with GeoAI
models getting increasingly computationally expensive,
such as in the use of deep neural networks for weather
forecasting (Pathak et al., 2022; Sønderby et al., 2020),
satellite imagery classification (Jiao et al., 2018; Malof
et al., 2017; Cong et al., 2022), traffic prediction (Cai et al.,
2020; Yin et al., 2021), and so forth. Associated with these
models are increasing financial costs, environmental costs,
and social costs. It is interesting to note that models used to
quantify sustainability issues or simulate the potential ef-
fects of measures to mitigate these issues (e.g., Heuvelink
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et al., 2021; Mayfield et al., 2017) are, themselves, heavy
energy consumers.

Calls to improve the energy efficiency and reduce the
GHG cost of large computational models have become
more frequent within the machine learning community.
A variety of strategies have been put forward to quan-
tify, report, and ultimately reduce the carbon footprint of
modeling, discussed in later sections. We believe most
are steps in the right direction and encourage their con-
sideration within the GeoAI community. However, some
proposed strategies entail ethical trade-offs regarding ge-
ographic disparities that have received little attention to
date. In this work, we explain these trade-offs while en-
couraging the GeoAI community to prioritize sustainabil-
ity alongside model performance. To start this discussion,
we propose a framework (intended eventually to be refined
into a numerical index) to evaluate models from several
sustainability-related angles, including energy efficiency,
carbon emissions, transparency, and social consequences.
We hope that reporting on these angles will motivate our
community to make resource-conscious decisions regard-
ing model architecture design and evaluation.

The remainder of this paper is organized as follows. In
Section 2, we briefly describe how attention to the energy
and carbon costs of computing has grown, software tools
intended to help reduce these costs, and how to take the
full life cycle of hardware into account. We then propose
a framework for model sustainability that incorporates
a (geo)spatial and temporal perspective in Section 3. In
Section 4, we discuss trade-offs between model improve-
ment and sustainability, together with implications for ge-
ographic information. Finally, we summarize our findings
and conclude with recommendations to the GeoAI com-
munity in Section 5.

2 Related Work

Growing awareness of climate change, and the role of
greenhouse gas emissions driving it, have prompted many
to consider the environmental consequences of computing.
Early concerns focused on energy consumption of infor-
mation and communication technologies in general (e.g.,
Hilty et al., 2009; Gelenbe and Caseau, 2015; Malmodin
et al., 2013). Cryptocurrency mining has more recently
popularized the topic in mainstream media (e.g., Gon-
zalez, 2022; Hinsdale, 2022; Schmidt and Powell, 2022).
Concurrently, developers of AI and other computationally
intensive modeling techniques in Earth system sciences
(Loft, 2020; Fuhrer et al., 2018), computational biology
(Lannelongue et al., 2021), precision medicine (Samuel
and Lucassen, 2023), and other communities have increas-
ingly questioned their role in climate change mitigation.
Together, they have spawned initiatives such as Green AI

(Schwartz et al., 2020), Green Algorithms1, and the Green
Software Foundation2.

Software tools have been developed for estimating, visu-
alizing, and reporting operational energy use and carbon
emissions associated with machine learning algorithms.
For example, CodeCarbon (Lottick et al., 2019), Car-
bon Tracker (Anthony et al., 2020), Machine Learning
Emissions Calculator Tool (Lacoste et al., 2019), Ener-
gyVis (Shaikh et al., 2021), and experiment-impact-tracker
(Henderson et al., 2020) analyze code, hardware, and in
some cases the region where the code was executed to esti-
mate the amount of energy used and carbon emissions gen-
erated. Often, such tools will predict how energy or carbon
costs can be reduced by changing the hardware used or the
geographic region where the code is executed. These tools
are intended to simplify footprint estimation and reporting.
At the same time, they promote resource-use efficiency as
an evaluation standard within the machine learning com-
munity.

While the carbon costs of operating devices, or opera-
tional emissions, have grown somewhat in the past decade,
they have been eclipsed by the carbon costs of producing
devices, or embodied emissions (Gupta et al., 2022; Wu
et al., 2022). Embodied emissions relate to the construc-
tion of hardware-manufacturing facilities, procuring raw
materials, and the fabrication, assembly, packaging, and
recycling of devices. Replacing or augmenting old hard-
ware with newer, more powerful machines may increase
operational efficiency but at the expense of a larger over-
all carbon footprint when considering operational and em-
bodied emissions together (Wu et al., 2022; Lannelongue
et al., 2021). Embodied emissions have been calculated to
far outweigh operational emissions in contemporary com-
puting (Gupta et al., 2022), yet embodied emissions are
generally harder to estimate and have received less atten-
tion.

3 A Sustainability Framework for Model Evaluation

To promote resource awareness in GeoAI research, we
propose a framework for evaluating model sustainability,
eventually intended to become a multipart numerical index
comprising a list of indicators. Just as authors of papers,
submitted to AGILE and other conferences, are asked to
provide their data and code to improve reproducibility, we
hope that future papers will also report on sustainability
indicators. We encourage sustainability to be part of the
evaluation criteria rather than focusing solely on accuracy
improvements over existing baselines, regardless of GHG
costs. Fig. 1 provides an overview of the proposed com-
ponents through three conceptual lenses, namely energy,
social consequences, and transparency.

1https://www.green-algorithms.org/
2https://greensoftware.foundation/
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Figure 1. Lenses of the proposed sustainability framework.

Energy: (a) Efficiency: Where hardware specifications al-
low, the amount of energy consumed to train and re-
train a model should be reported. If that is not possible,
other indicators of energy consumption, like a combina-
tion of runtime and the hardware used, should be substi-
tuted. (b) Carbon3 intensity: When publicly available, the
power-generation source should be disclosed, for exam-
ple, "carbon-friendly" solar, hydro, or wind vs. "carbon-
intensive" fossil fuels. If possible, an estimate of the car-
bon emissions generated as a result of the computations
in the paper should be made available. Ideally, research
would also report energy costs together with the carbon in-
tensity of the data centers used so that they can be openly
compared to alternative setups.

Social Consequences: For large-scale, computationally
intensive models, include a statement evaluating poten-
tial risks and benefits to populations that may be af-
fected. When outsourcing cloud computing jobs to carbon-
friendly regions so as to reduce overall carbon emissions,
we should also take into account the potential negative
impact for the population in those regions. A risk-benefit
assessment is adopted here to roughly estimate the social
consequences.

Transparency: Building upon the reproducible research
initiative of AGILE4, we envision a new submission guide-
line for transparency. In addition to data and software
availability, one should include as much information as
possible regarding the model setup, such as training time,
sensitivity to hyperparameters, hardware used, spatio-
temporal resolution (if applicable), and potential usage of
pre-trained models.

Fig. 2 shows a hypothetical evaluation of a model accord-
ing to the sustainability index outlined here. Each indica-
tor (represented by an axis) is assigned a score from 0 to
5 and aggregated into a radar chart. Through this chart,
we can quickly grasp the model’s performance on each
sustainability-related aspect. On the design of the index,
we adopt a graphic format to visualize the score of each
indicator. It can be used as a badge to recognize outstand-
ing conference papers, similar to the reproducibility badge

3We focus on carbon as it accounts for the vast majority of
GHG emissions.

4https://reproducible-agile.github.io/initiative/

proposed by AGILE and ACM5. In the following sections,
the three main components are substantiated.

Figure 2. A hypothetical example illustrating how the proposed
indicators might be visualized in an index.

3.1 Energy

To shrink the carbon footprint of computing, most pro-
posed solutions focus on the energy needed to operate de-
vices. Their recommendations broadly follow two strate-
gies: (1) increase energy efficiency and (2) minimize the
carbon intensity of the energy source (Loft, 2020). Re-
garding energy efficiency, modelers have been encouraged
to estimate and report the amount of energy consumed
to develop, train, tune, infer with, or otherwise run their
models and consider the energy costs of storing and trans-
mitting large amounts of data. Practices have been advo-
cated at the algorithm, hardware, and operating facility
level to improve efficiency, as summarized in Fig. 3. Pro-
posed measures include selecting efficient machine learn-
ing architectures (Gupta et al., 2022; Patterson et al., 2021;
Lottick et al., 2019); improving hyperparameter tuning
and inference efficiency (Anthony et al., 2020); using pre-
trained models (Yosinski et al., 2014); reducing floating
point–precision computation (Loft, 2020); developing and

5https://www.acm.org/publications/policies/artifact-review-
and-badging-current
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Figure 3. Proposed measures to improve the sustainability of AI models, and their potential general and GeoAI-specific pitfalls.

using more efficient programming languages, compilers,
and code libraries (Gupta et al., 2022; Lannelongue et al.,
2021); other strategies to modify algorithms in ways that
increase their efficiency (Lacoste et al., 2019; Strubell
et al., 2019; Wu et al., 2022); using hardware and settings
that are energy efficient (Anthony et al., 2020; Patterson
et al., 2021; Gupta et al., 2022; Henderson et al., 2020; La-
coste et al., 2019; Strubell et al., 2019; Shaikh et al., 2021;
Lannelongue et al., 2021); and selecting cloud providers
that operate facilities with an optimal power usage effec-
tiveness (PUE) (Lacoste et al., 2019).

To minimize the carbon intensity of energy sources, rec-
ommendations include training and running models in ge-
ographic regions and at times of day that result in lower
carbon emissions (Anthony et al., 2020; Patterson et al.,
2021; Dodge et al., 2022; Lottick et al., 2019; Henderson
et al., 2020; Lacoste et al., 2019; Shaikh et al., 2021; Lan-
nelongue et al., 2021; Gupta et al., 2022; Wu et al., 2022).
We argue that these measures are transferable to GeoAI to
some extent but also come along with certain pitfalls that
are shown in Fig. 3 and discussed below.

3.2 Social Consequences

Recognizing that energy production varies from region to
region in terms of its carbon intensity, many have advo-
cated shifting large computing jobs to carbon-friendly re-
gions as a solution to reducing carbon emissions. Bender
et al. (2021) note the geographic disparity between the
people who typically benefit from large language models
and those who are most vulnerable to the consequences
of emitting carbon, i.e., climate change. Reducing car-
bon emissions slows the progression of climate change
and, consequently, the risk exposure of communities most
vulnerable to it. This argument recognizes the potential
harm enacted through climate change to communities dis-
tant from those who benefit from the model. However,
a second—largely ignored—mechanism by which harm
can be done is through power generation itself. While
outsourcing energy-intense computing to more carbon-
friendly regions helps reduce carbon emissions globally,

it places a social and environmental burden on the place
where the power is generated. Underlying social and envi-
ronmental costs such as noise, biodiversity loss, appropri-
ation of land and water resources that could be devoted to
other uses, etc., are associated with any kind of power gen-
eration. For example, carbon-friendly energy sources like
wind turbines can increase bird mortality and cause habi-
tat loss (Marques et al., 2020; Smallwood, 2007). Whether
through climate change or power generation, the conse-
quences of computing—and their potential for geographic
displacement—should be acknowledged.

To demonstrate current disparities, we compare the carbon
intensity of production vs. consumption of selected coun-
tries in Table 1. Switzerland, for example, consumes more
non-renewable energy than it generates, while Estonia is
in the opposite situation, consuming less carbon-intensive
energy than it produces. Such imbalances in energy im-
ports and exports could increase with the growing impor-
tance of energy-intensive computing centers. Nowadays,
the major cloud computing providers are taking action to
reduce their carbon footprint by offsetting carbon emis-
sions or investing in renewable energy. Even so, if the en-
vironmental burden outweighs the benefits of the compu-
tational task to the community where the power is gener-
ated, outsourcing power generation in this way could be
considered an environmental injustice.

Table 1. An overview of carbon intensity in energy production
and consumption in selected regions. Data are pulled from https:
//app.electricitymaps.com/map as yearly averages for 2022, in
units of gCO2eq/kWh.

Power Grid
Carbon Intensity

(Production)
Carbon Intensity

(Consumption)
North Sweden 13 16
Iceland 27 27
Switzerland 60 153
Estonia 607 390
Western India 622 600
Cyprus 949 949

https://app.electricitymaps.com/map
https://app.electricitymaps.com/map


Relocating computing centers to low-carbon regions will
put local residents disproportionately at risk and is not the
ultimate solution to AI sustainability. We should take into
account whether the people there would benefit from the
to-be-trained model and how much overlap there is be-
tween the population that benefits and the affected pop-
ulation. In the case of a global model, e.g., to predict
the worldwide spread of COVID-19, shifting the model’s
training and deployment regions would not present the eth-
ical concern we raise above, as the population affected by
power generation would stand to benefit from the model,
as well, if such benefits are distributed equally. However, a
model that classifies road conditions in Boston should not
necessarily be trained in Asia.

3.3 Transparency

While transparency and sustainability are often treated as
separate values and principles (Jobin et al., 2019), we con-
sider them to be intertwined if looking at them from a
geographic perspective. Transparency, together with effi-
ciency and accuracy, should be promoted as a crucial com-
ponent of evaluation metrics. Information on model train-
ing time, sensitivity to hyperparameters, future fine-tuning
needs, hardware requirements, spatio-temporal resolution
and scope, where and when the energy powering computa-
tion was generated and consumed, etc., should be reported
systematically, if possible. We acknowledge, however, that
disaggregating and defining CO2 emissions throughout a
model’s full life cycle remains a challenge (Luccioni et al.,
2022). With such information, follow-up research and fu-
ture adopters of the model will have a clear baseline from
which to improve. To date, this discussion has not reached
the GeoAI community at large. Therefore, we argue that
available software for quantifying the energy and carbon
footprint of machine learning models (Lottick et al., 2019;
Anthony et al., 2020; Lacoste et al., 2019; Shaikh et al.,
2021; Henderson et al., 2020) contributes an important
step towards more transparency but should be extended to
include social and geographical aspects.

4 Discussion

4.1 Performance vs. Resources: Trade-offs?

The trade-off between AI model performance and
resources—e.g., hardware, energy—required to achieve
that performance deserves scrutiny. For example, Geiping
and Goldstein (2022) compared the BERT model’s down-
stream performance to what they were able to achieve with
only a single consumer-grade GPU and one day of train-
ing from scratch. This triggers more questions: how sensi-
tive is a model to hyperparameter tuning for downstream
tasks? How often does a model need to be retrained? Does
a model require a long training time but no future fine-
tuning or a relatively short training time with a constant

need for retraining? With the development of foundation
models, these questions become even more critical as one
advantage of using them is to answer questions relying on
what is learned from the intensive pre-training process so
that no more training is needed for new tasks. Therefore,
pre-trained models may contribute to AI sustainability by
potentially reducing GHG emissions.

4.2 The Spatio-temporal Resolution and Scope of
Geographic Information

One distinguishing characteristic of geographic infor-
mation is its resolution—or granularity, speaking more
broadly—as one of the core concepts of spatial informa-
tion proposed by Kuhn (2012). In contrast to language
data, which can be reduced to a single character as its finest
resolution, so to speak, geographic data can be collected
and represented at infinitely fine spatial or temporal resolu-
tions, at least theoretically. The resolution of data used in a
model affects the computational resources needed. Beyond
spatio-temporal resolution, we should also encourage au-
thors of GeoAI work to improve model efficiency by criti-
cally selecting an appropriate spatio-temporal scope with-
out compromising the results or introducing additional
bias, e.g., representation bias (Liu et al., 2022). While a
language model may be useful for years to come, a land-
use model may need more frequent updating: language
changes slowly (considering the large corpora used dur-
ing training), while drivers behind the location of agricul-
tural expansion, for example, change much faster (Verste-
gen et al., 2016). Our models in GeoAI may require an
entirely new cycle of training, tuning, and deployment on
a more frequent basis to remain relevant.

5 Conclusions

As machine learning models get increasingly powerful, we
see tools like ChatGPT receiving unprecedented attention.
However, for these large-scale, computationally intensive
models, their energy consumption and associated carbon
emissions are not as widely discussed.

In this paper, we echo the call for Green AI in the ma-
chine learning community and bring this issue to the at-
tention of GeoAI research. In addition to transferring com-
monly used sustainability-evaluation metrics, such as effi-
ciency and transparency, to the GeoAI field, we propose
to further consider ethical factors related to the location
of energy-consuming data centers. We should not sim-
ply suggest outsourcing computationally intensive train-
ing jobs to carbon-friendly regions in order to reduce the
overall carbon footprint; the local residents in these re-
gions might be negatively impacted by the underlying en-
vironmental and social costs of providing the power, even
if it is carbon friendly. We include another spatio-temporal
perspective and suggest that GeoAI models focus on im-
proving efficiency by choosing their spatio-temporal reso-



lution and scope in relation to the affected vs. benefiting
regions. Finally, we propose a sustainability framework
for model evaluation that incorporates the aforementioned
factors, hoping to foster GeoAI research that is more car-
bon conscious in the future.

We encourage researchers to systematically report on car-
bon emissions and information regarding the model setup,
such as training time, sensitivity to hyperparameters, fu-
ture fine-tuning needs, hardware and data center used, etc.
More transparency can help follow-up research improve a
model’s efficiency, mitigate long-term carbon emissions,
and promote social responsibility.

Finally, our work here is intended as a starting point
for discussions, workshops, and community engagement
in style similar to recent approaches that have brought
multi-faceted ethical issues to our joint attention (Good-
child et al., 2022) before developing large-scale, resource-
intensive GeoAI foundation models (Mai et al., 2022).
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