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Introduction

Micromobility  services  provide  short-term  access  to  a  shared  fleet  of  light  weight  personal
transportation vehicles. Admittedly, defining these types of services is a bit like hitting a moving
target  as  the  transportation  landscape  is  very  much  in  flux  with  new  mobility  technologies
disrupting the market every few months. In Chapter 12 of this book, Shaheen & Cohen provide a
broad overview of the policies and practices associated with shared micromobility.  In this chapter
we limit our discussion to those micromobility services with vehicles that (a) involve electricity in
some capacity, be it solely electric powered, or electric-assisted and (b) are dockless, meaning that
users are not required to lock or dock them at a designated station, but can (in most cases) leave
them in  any  public  space  (e.g.,  sidewalk).  The  two  vehicle  types  most  often  associated  with
dockless, electric micromobility are electric scooters (e-scooters), and electric-assist bicycles (e-
bikes). Both service types currently operate in a similar fashion with users identifying the location of
an available vehicle through a mobile application, unlocking the vehicle by scanning a vehicle's
matrix bar-code and riding the vehicle to their destination. Upon arriving, the user parks the vehicle
(typically using a kickstand) and locks it through their mobile application, thus completing the trip.
When these services were first launched in the United States, they typically cost $1 USD to unlock
and $0.15 - $0.30 USD per minute depending on the city. 

Over the last couple of years, these micromobility vehicles have flooded urban centres around the
world. Replacing many of the non-electric, dockless bicycles that came before them, cities like
Santa Monica and Washington, DC adopted these services in early 2018, paving the way for a
range of operators to establish micromobility services in hundreds of cities world wide. The start-up
companies operating these services, many funded or acquired by large automotive or ride-hailing
companies, advertise them as a low-cost way to get around the city, an alternative to traditional
motorised  vehicle,  bicycle,  or  even  walking.  Advocates  see  these  vehicles  as  a  method  of
alleviating  traffic,  reducing  pollution  and  greenhouse  gas  emissions,  and  an  alternative
transportation option that is energy efficient and suitable for ‘last mile’  transportation  (Gössling,
2020).   On  the  other  hand,  critics  see  them as  a  health  and  safety  nuisance  (e.g.,  injuries,
irresponsible  riding)  that  simply  adds  additional  congestion  to  an  already  struggling  urban
transportation network. 

Overall, the introduction of micromobility services has been marred with controversy as operators
often   entered the market without official approval from local authorities.  This has left little time for
urban and transportation planners to conduct thorough assessments. The ensuing conflict between
micromobility operators and local authorities was further complicated by several factors related to
(1) a lack of micromobility specific regulations and (2) conflicts with jurisdictional authority. In mid-
2018, for instance, only six U.S. states specifically regulated e-scooters (Agrawal et al.,  2019).
California has taken a hands-off approach, allowing e-scooters to operate legally since at least
2000 (and has gradually added statutes to further regulate their operation) while in the State of
New York they remained illegal to operate through 2020. In the meantime, cities have nonetheless



begun  developing  comprehensive  micromobility  regulatory  programs  that  include  permitting
processes,  data-sharing  requirements,  use  and  operational  restrictions,  and  equity  and
sustainability initiatives.

Despite their recent introduction, micromobility has grown substantially worldwide.  The National
Association of City Transportation Officials (NACTO) estimated that 38.5 million e-scooter trips took
place in 2018, with a fleet of over 85,000 e-scooters in 100 U.S. cities (NACTO, 2019). Of these
trips, 40% took place in Los Angeles; San Diego and Austin. By comparison, NACTO reported 36.5
million station-based bikesharing trips, 9 million dockless bikesharing trips, and 6.5 million e-bike
trips (up from 2.4 million total trips in 2011). An early survey reported that micromobility service
users are typically younger males (Krizek and McGuckin, 2019), a demographic trend also found
with more traditional non-e-bikeshare usage (Singleton and Goddard, 2016).  Similar results were
found in further studies for Portland (Orr et al., 2019), Santa Monica (City of Santa Monica, 2019),
and San Francisco (San Francisco Municipal Transportation Agency, 2019). 

Why conduct spatiotemporal analysis? 

While  analyses  based  on  trip  count  and  demographic  statistics  are  useful  from a  policy  and
regulatory perspective, they only tell  one part of the story.  Crucially, they omit the spatial and
temporal  dimensions  of  activity/travel  patterns  that  occur  within  the  city.   Understanding  the
dimensions of where and when people use these services is important for practical reasons such
as  public  health  and  safety,  measuring  the  local  impacts  that  these  services  are  having  on
neighbourhoods  and  urban  infrastructure,  and  how  these  new  services  operate  in  relation  to
existing  transportation  options  within  a  city.  Furthermore,  they  help  develop  our  scientific
understanding  of  human  mobility  including  the  rationale  for  travel  related  motivations  and
decisions.

Stepping outside of an individual  city,  spatiotemporal analyses also permits us to more deeply
examine how ridership varies between cities and even countries. Identifying activity trends have
the potential to inform decision makers on how these services may operate in new markets and
suggest  regulations  to  ensure  that  these  services  complement  existing  transportation  options
(rather than compete with them). As such, in this chapter we provide an overview of spatiotemporal
analysis techniques that are currently being used in identifying activity patterns of micromobility
services. The objectives of this chapter are: 

 to introduce the reader to electric micromobility services, namely e-scooters, and e-bikes. 

 to present a number of quantitative analysis techniques for identifying spatial and temporal
activity patterns within the data. 

Analysing micromobility Data: A spatiotemporal approach 

In  this  section we introduce a range of  spatial  and temporal  analysis  techniques to  explore a
sample of micromobility data with the goal of demonstrating how these techniques may provide
insight into how these services are used. The data used in these analyses are trip origins and
destinations for the month of July 2019 for two different micromobility services in two different
cities, namely Lime e-scooters in Washington, DC, and Jump e-bikes in Montreal. These two sets
of data were chosen as they represent micromobility services at two very different stages. In the
short  history of  micromobility services in the United States, Washington was an early adopter.
These services have operated within the District for roughly two years at time of writing and consist
of multiple service operators. The novelty of interacting with micromobility vehicles in Washington,
DC has worn off for most citizens, and the service operators now rely on a robust and consistent



user base. The data from Montreal,  on the other hand, are from the first  month of Montreal's
micromobility pilot project. As one of the first cities in Canada to allow Jump e-bikes, these data
reflect a service in its infancy with a limited number of vehicles and a user base that has limited
experience  with  micromobility  vehicles.  Additionally,  the  Montreal  data  are  for  e-bikes,  a  very
different  vehicle  type  than  e-scooters.  These  data  represent  two  ends  of  the  spectrum  for
micromobility service type, novelty, user-reliance, and trip volume. 

First, we compare some basic statistics for the two micromobility services (Table 1).  There is a
notable difference in the number of trips, number of vehicles in use per day, and average number
of trips per day. The City of Montreal's pilot project restricted the number of vehicles which explains
the  difference  in  the  first  three  rows.  The  variation  in  average  trip  duration  and  trip  distance
suggests that the average speed of a Jump e-bike is faster than a Lime e-scooter.  This can be
explained given that the speed of electric-assist bicycles are limited only by the pedal-power of the
user.  In general, these values are inline with similar reporting on this topic (Krizek and McGuckin,
2019; San Francisco Municipal Transportation Agency, 2019). 

Table 1: Counts and averages for two micromobility services in two cities. Means are reported
were appropriate with medians in parentheses.

Lime  e-scooter
(Washington, DC)

Jump  e-bike
(Montreal)

Number of trips 192,313 34,387

Average number of vehicles in use per day 731 (729) 272 (252)

Average number of trips per day 6,204 (5,940) 1,075 (1,028)

Average trip duration 25.1 (19) mins 19.5 (14) mins

Average trip distance 1,347.3 (1,055) m 3,482.5 (2,831) m

Temporal Patterns 

The first dimension of the activity patterns we'll discuss is temporal. The average trip duration, as
reported in Table 1, only tell part of the story. We can further explore micromobility usage patterns
by identifying when the services are most and least popular. First we aggregate trip start times by
an appropriate temporal resolution, such as the hour of a typical day, or day of a typical week.
These are reasonable resolutions given the average duration of a trip. The daily temporal patterns
for Lime e-scooters in Washington, DC and Jump e-bikes in Montreal are calculated by counting
the total number of trips by day of the week across the entire month of July 2019 (Figure 1a & 1b). 

(a) Lime e-scooters in Washington, DC (b) Jump e-bikes in Montreal



(c) Lime e-scooters in Washington, DC (d) Jump e-bikes in Montreal
Figure 1: Trip volume by day (a,b) of the week and Hour of the Day (c,d)

Even through this basic aggregation analysis, we can see that the two cities/services show very
different  temporal  usage  patterns.  Notably,  Lime  usage  in  Washington,  DC is  highest  on  the
weekends with low usage mid-week which contrasts Montreal's Jump activity showing increased
usage during the week with the lowest activity on the weekends. This is consistent with the findings
from the  National  Association  of  City  Transportation  Officials  (2019).  Increasing  our  temporal
resolution, we can explore these same aggregated trip start times as hours of a day (Figure 1c &
1d). 

While arguably more similar than the daily activity patterns, we do find some important differences
between these two hourly temporal patterns. The most notable difference is the morning peak in
the Jump data and lack of peak in the Lime data. This peak in the Jump temporal patterns reflects
those user that rely on a Jump e-bike as part of their morning commute. This same peakedness
has been identified in a number of other studies (Chang et al., 2019; Liu et al., 2019). The lack of a
peak in the Lime data suggests that the Lime service as a whole is used less by people commuting
for work. Similarly, the highest usage of the Jump service in Montreal is found between 5pm and
6pm (typical evening commute hours) while Lime usage in Washington, DC is identified around
4pm. All of these differences suggest that these two micromobility services cater to different types
of users with varying mobility purposes.  In this example, while we are comparing two services
between  cities,  these  same  differences  in  temporal  patterns  are  also  observed  between
micromobility services in the same city. 

What the temporal patterns above do not show us is how the same micromobility service might
vary between cities.  For  instance,  how do the temporal  patterns of  Jump e-bikes usage differ
between Montreal and Berlin? We can answer this question by first aggregating trip start activity
patterns to hours of a typical week for both cities. To account for the magnitude of difference in trip
volume between the two cities,1 each city's temporal pattern is normalised by the maximum hourly
trips. Berlin's aggregate temporal pattern is then subtracted from Montreal's.  The resulting pattern
indicates that, Berlin's Jump e-bike users are even more commuter focused than Montreal's, with
higher  activity  during  the  weekday  morning  and  evening  commuting  times  and  relatively  less
activity in the early mornings and afternoons. 

Further research has explored the underlying land use associated with micromobility trips. Our
previous work (McKenzie, 2019) explored the temporal distribution of trip origins and destinations
by land use type in Washington, DC and found that the percentage of trips starting in residential
land use regions did not  change significantly from weekdays to weekends (roughly 24%). The
largest  difference  was  identified  between  commercial  and  recreational  regions.  Weekend  trips
originating  in  recreational  areas  made  up  a  substantially  larger  percentage  of  overall  trips
compared with those originating in commercial regions. 

1 We identified 157,243 trips in Berlin for July 2019



How do these compare to docking station-based bikeshare? 

Next, we compare the temporal patterns for our two micromobility services to those of the more
traditional, and often government funded, docking station-based bikeshare services. This topic has
been addressed in a number of studies (McKenzie, 2018; Li et al., 2019). Using the aggregation
technique discussed in previous sections, we again identify temporal patterns, but this time for
Washington DC's Capital Bikeshare (CaBi)2 and Montreal's Bixi3 programs. Both of these systems
have been in use for at least a decade and offers two payment types. Members pay a monthly or
yearly subscription fee whereas Casual users pay for a one way trip or weekend pass. The hourly
temporal  patterns  for  Capital  Bikeshare  in  Washington,  DC are  shown  in  Figure  2,  split  into
member and casual user trips. The temporal patterns for Montreal's Bixi are very similar. 

(a) Casual Users (b) Members
Figure 2: Capital Bikeshare temporal activity (hours of a day) for July 2019 split by members and
casual users.

These two bikeshare  patterns  show striking  differences.  Membership  usage reflects  traditional
commuting  patterns  with  high  usage  during  the  morning  and  evening  weekday  commute.  By
comparison, temporal patterns for casual users do not display this same commuting behaviour.
The daily temporal patterns show a similar pattern with lower usage for members on the weekends
compared  to  casual  users.  These  patterns  are  supported  by  the  findings  from  the  National
Association  of  City  Transportation  Officials  (2019),  who  conducted  similar  analysis  across
numerous  cities  in  the  United  States.  When  we  compare  these  two  docking  station-based
bikeshare patterns to the temporal patterns for our micromobility services (shown in Figure 1) we
identify clear similarities. Visually, the Lime e-scooter patterns appear to be more similar to the
casual bikeshare usage patterns whereas the Jump e-bike patterns show more similarity to the
member  bikeshare  usage,  representing  dominant  weekday  commuting  behaviour.  Statistical
analysis  of  these patterns through the use of  methods such as Watson's  Two sample test  of
homogeneity and cosine similarity confirm this visual assessment (see McKenzie, 2020 for further
details). The NACTO asserts that station-based bikeshare trips have a higher proportion of trips
motivated by travel to and from work, connecting to transit, and social reasons while e-scooters
have  higher  proportions  for  recreation/exercise  reasons  (NACTO,  2019),  an  argument  that
supports our findings here. 

Spatial Patterns 

Next, we explore micromobility activity using spatial analysis techniques to identify common spatial
patterns in the data. As was the case with temporal data exploration, the resolution at which the
data is aggregated plays an important role. Figure 3 shows our two datasets, Lime e-scooters in
Washington,  DC  and  Jump  e-bikes  in  Montreal  using  three  different  methods  of  spatial
aggregation. 

In the first approach (Figures 3a and 3d) we aggregate all trip origins from our datasets into 500
meter radius hexagons and generate a choropleth map binning trip volume by  colour saturation.

2 https://www.capitalbikeshare.com/
3 https://montreal.bixi.com/en



This  cartographic  technique is  useful  for  identifying  core  operating  regions  (clusters)  for  each
service  in  addition  to  exposing  the  spatial  extent  of  each  micromobility  service  in  each  city.
Statistical  techniques  for  quantifying  and  comparing  these  services  involve  autocorrelation
functions and spatial clustering measures such as Moran's I or DB-scan as well as spatial similarity
measures  such  as  Earth  Mover's  Distance.  We  have  used  these,  and  other  techniques,  to
successfully  compare  different  services  in  the  same  city  showing  that  there  are  significant
differences  in  the  spatial  patterns  of  different  micromobilty  operators  within  the  same  region
(McKenzie, 2020). 

(a) Trip origin volume by 500m
hexagons

(b)  Lines  between  Origin  &
Destination

(c) Trip volume on road network
(estimated)

(d) Trip origin volume by 500m
hexagons

(e)  Lines  between  Origin  &
Destination

(f) Trip volume on road network
(estimated)

Figure 3: Three spatial representations of shared mobility activity over the month of July, 2019.
Lime e-scooters in Washington, DC, USA (a,b,c) and Jump e-bikes in Montreal, Canada (d,e,f).

In the second set of maps (Figures 3b and 3e), we show all trips as individual lines drawn between
each origin and destination. This approach ignores the underlying street networks and is useful
primarily  to  demonstrate  rough  distances  between  points,  identify  clusters  of  origins  and
destinations outside the city cores, and generally represent all trips as a series of coarse nodes
and edges. Each trip is represented by a thin line with a low opacity allowing overlapping lines to
increase  the  density  on  the  map,  highlighting  frequent  trips  between  the  same  origins  and



destinations. For instance, in Washington, DC, we see a clear linear cluster linking the Northeast of
the city to the downtown core. Further investigation of this cluster identified a high volume juicing
location within the District.4 From a spatial statistics perspective, origin-destination flow clustering
techniques have been successfully  employed to identify  large clusters of  trajectories in similar
mobility datasets (Zhou, 2015). 

Finally, Figures 3c and 3f show the same sets of trips mapped to the local street network. In some
cases, researchers have access to global navigation satellite system trajectory data (e.g., GPS
tracks) and can snap these sequential points to the street network (Murphy et al., 2019). In other
cases, researchers only have access to the origins and destinations of trips. In this latter case, an
algorithm such as Dijkstra's (1959) can be used to calculate the shortest path between an origin
and destination along a connected street network. The two street network maps shown here were
generated in this manner. This is a useful technique for depicting trip volume along a real street
network, using colour saturation and line width to indicate which streets are busier than others.
While the origin density maps (Figures 3a and 3d) show the volume of trips based on trip origins,
these maps show the  full trips as a density value. Depending on the origins, destinations, and
shortest path between the two, these two maps may differ in the regions of the city they show to be
busiest. The data presented visually in these two figures can be analysed spatially in a number of
ways. In comparing two or more service areas, Earth Mover's Distance can again be used, as well
as network-based similarity and graph measures such as centrality and connectedness (Tantardini
et al., 2019). 

Compare with docking station-based bikeshare 

The difficulty in a spatial comparison of micromobility services and docking station-based bikeshare
is that the two services operate quite differently, resulting in two very different spatial footprints.
While micromobility services are dockless, meaning trips may originate or finish anywhere, most
existing  bikesharing services,  such as  Capital  Bikeshare  and Bixi,  are restricted  to  starting or
ending a trip at a docking station. To properly conduct a spatial comparison, we generate a Voronoi
tessellation from the docking station locations. A Voronoi tessellation is a partition of a plane into
regions close to each of a given set of objects, in our case, docking stations. This tessellation
approach produces regional polygons from point data thus associating all parts of a city with one
station  or  another.   We  then  intersect  and  aggregate  all  micromobility  trip  origins  with  these
Voronoi polygons, producing a comparable set of geometries. 

Another difficulty  in  comparing these two services is  the difference in trip volume.  Traditional
docking station-based bikeshare usage remains quite high, compared to micromobility usage, in
most North American cities that operate one.  To identify which of the two services is relatively
more popular in a given region, we first normalised each of the trip counts by dividing the count in
each region (Voronoi polygon) by the maximum number of trips overall. The resulting normalised
trip volumes means that we can subtract one service from another in each region producing the
maps shown in Figure 4. 

4 Juicing is the term Lime uses to describe the process of a private citizen being paid to recharge one or more vehicles.



(a) Service dominance by Capital Bikeshare (b) Service dominance by Bixi

Figure 4: Comparing normalised bikeshare trip volume to normalised micromobility service volume
using station-based Voronoi polygons as the common geometry.

In Figure 4a the map indicates that, relatively speaking, Lime e-scooters are more popular than
Capital Bikeshare outside of the downtown core and specifically in certain neighbourhoods to the
west  of  the  city  such  as  Georgetown  and  along  the  National  Mall.  By  comparison,  Capital
Bikeshare is more popular in the downtown core, along the Potomac waterfront, and in the Capitol
Hill  neighbourhood.  While  future  analysis  should  compare  these  regions  to  their  daytime
demographics,  these results,  in  combination  with  the  temporal  analysis,  suggests  that  Capital
Bikeshare is used more by commuters in getting to and from workspaces in the District whereas
Lime e-scooters are more likely to be used for leisure and recreational activities. A similar pattern
can be seen in Figure 4b with Bixi dominating the downtown core of the city and the Old Port and
Jump e-bike more prevalent in some of the younger and more affluent neighbourhoods outside of
the city core. 

Compare with ride-hailing services 

Another  form of  shared mobility  that  disrupted the urban transportation  status-quo well  before
micromobility  services  hit  the  streets,  is  ride-hailing  (e.g.,  Uber).  In  discussing  the  rise  of
micromobility services one is often asked how these two very different sharing economy services
compare. Here we examine these two services with the goal of identifying which service is faster,
and when. 

Ride-hailing travel time data is publicly available for a number of cities through Uber's Movement
dataset.5 These data report hourly aggregated travel times between all  pairs of Traffic Analysis
Zones (TAZ) within a city, both for weekdays and weekends. Provided these data for a city such as
Washington, DC, we aggregate our micromobility data at the same spatial and temporal resolution.
Restricting our analysis to only adjacent TAZ, we calculate the difference in average travel time
between ride-hailing services and micromobility services. 

Splitting these spatial results into weekday and weekend maps, we observe that difference in travel
time is temporally dependent. For instance, on weekdays in much of the downtown core, it is faster
to take an e-scooter or e-bike than a ride-hailing service to get to a nearby location.  On weekends,
ride-hailing services are almost always faster.   Further analysis of  the temporal  patterns at an

5 https://movement.uber.com/



hourly  resolution  demonstrates  a  continued  trend.  During  the  weekend,  averaging  across  all
regions, it is always faster to use a ride-hailing platform than a micromobility service, regardless of
the hour. Similarly, during most hours of a weekday it is faster to use a ride-hailing service with the
important exception of rush hour, from 8-9am and 5-6pm, when it is significantly faster to use a
micromobility vehicle (McKenzie, 2020). 

The Future of micromobility 

As micromobility service operators rapidly expand into new markets around the world, many of the
cities in which the services have been operating continue to wrestle with their long-term impacts.
Concerns over the impact of this disruptive transportation model fuel discussions in the media,
government offices, and on the streets. As is the case with many new technologies, regulatory
agencies are often slow to react and two years after their launch, many local governments are just
now beginning to fund research into to their impacts on health, safety, the environment, and urban
infrastructure. It is an exciting time to be a researcher in this field. 

In this chapter, we presented a spatiotemporal analysis approach to identifying nuanced activity
behaviour of micromobility users. We demonstrated that raw trip count and demographics alone do
not give a complete picture of how these services are used. Digging into the spatial and temporal
patterns provides us with much more information on which to gain an understanding of both why
and  how these vehicles are being used. While informative, it is important to remember that the
approaches presented in this work just begin to scratch the surface of what is possible.  It is only
through  combining  multiple  analysis  techniques  that  we  can  truly  understand  the  role  that
micromobility plays in the urban sharing economy. 

What is next? 

The future of micromobility services is anything but clear. Though these services now represent a
multi-trillion  dollar  industry,  they  continue  to  grapple  with  government  regulations  and  societal
push-back.  In  discussing  the  future  of  micromobility,  one  next  step  that  we  are  likely  to  see
relatively soon is the establishment of more formal partnerships between cities and commercial
micromobility  operators.  With  privately  funded  micromobility  services  pushing  into  the  existing
taxpayer  funded  bikesharing  market,  it  is  only  a  matter  of  time  before  cities  replace  existing
docking-station based systems with  dockless,  electric  modes of  transportation.  By flexing their
regulatory  muscles  it  is  likely  that  local  governments  will  strongly  encourage  public-private
partnerships with these micromobility service operators, allowing cities to have a stronger role in all
aspects of the business from fleet management to enforcing parking laws and safety standards.
This  will  likely  mean a  more  equitable  distribution  of  vehicles  with  the  city  moving to  include
communities that currently do not have access to there services.  Similarity, regulatory control may
move  from the city level  to the county,  state,  or provincial  level with the goal  of  standardizing
access and regulations. This move will also permit greater multi-modal cooperation with existing
urban transportation systems such as buses and trains. For instance, leading mapping platforms
have recently added “scooter mode” to their navigation options suggesting it is just a matter of time
before government-endorsed transportation applications add micromobility vehicles to their multi-
modal route planning services. Access to data will play a pivotal role in all of this. A move towards
open data and adoption of data standards will lead to more integrated planning which, in the end,
will benefit all stakeholders.
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