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Abstract

The term social sensing describes crowd-sourcing techniques and applications
that make use of sensors that are closely attached to humans, e.g., as parts
of smartphones, and are either directly or indirectly used to provide sensor
observations at a high spatial and temporal resolution. In contrast to typi-
cal volunteered geographic information (VGI) applications which rely on the
conscious and active contribution of information, most social sensing happens
on-the-go, i.e., as by-product of human behavior and interaction with technol-
ogy. Social Sensing has great potential for many applications in urban planning,
transportation, crime prevention, health, and so on. In this paper, we focus on a
technique called semantic signatures to extract and share high-dimensional data
about places. Such semantic signatures reveal how people interact with their
environment such as the times they visit places of a certain type, e.g., Winery,
how they communicate about such places, and how these places are distributed
throughout space. We will provide an overview of signatures, methods to ex-
tract them, and highlight examples for their usage from previous work ranging
from location privacy and the extraction of regions, to reverse geocoding.
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1. Introduction

Several terms have been introduced over the past years to characterize a
broader underlying paradigm shift in the ways research is carried out across
many domains ranging from the social to the physical sciences. Big data, for
instance, highlights the increasing availability of massive datasets which enable
researchers to answer new questions by giving access to a higher spatial, tem-
poral, and thematic resolution than before, but requires novel techniques, e.g.,
parallelization, to handle the size of these data. The related concept of data
science, focuses on techniques to collect, clean, integrate, analyze, and visualize
this data deluge. Several variations of these original terms have been introduced
more recently to address some criticism related to big data and data science. For
instance, broad data and smart data are both meant to highlight the fact that
size alone is of less importance than the heterogeneous sources where such data
may come from or the meaningful pre-selection and interpretation of the data
[1]. Gray’s notion of a fourth paradigm of science [2] focuses on how the wide
availability of data changes the inner workings of scientific workflows, e.g., by the
unexpected/opportunistic reuse of existing data. Finally, others have pointed
to the increasing need for techniques to support the meaningful integration and
synthesis of datasets given their growing volume, variety, and velocity[3].

Given this broader trend, it is worth asking how these new datasets are
created and how insights derived from these data can be made more readily
available, i.e., without the need to access the full data. Interestingly, many re-
cent breakthroughs in the broader field of data science are the result of social
machines, i.e., large-scale, socio-technical systems that arise from the interac-
tion of humans and machines [4, 5]. Typical examples for such systems are
Wikipedia, CAPTCHA-like systems to improve optical character recognition
(OCR), or massive datasets labeled by human users or via their usage. One
increasingly important method for collecting observational data of human be-
havior and interaction with the environment is social sensing [6, 7]. It describes
crowd-sourcing techniques and applications that make use of sensors that are
closely attached to humans, e.g., as parts of smartphones, and are either di-
rectly or indirectly used to provide sensor observations at a high spatial and
temporal resolution. While user-generated content (UGC), such as volunteered
geographic information (VGI) [8], typically relies on conscious and active con-
tributions, social sensing often utilizes data that are created as by-products of
human behavior and their interaction with technology. To give a concrete exam-
ple, VGI includes tasks such as digitizing streets for the OpenStreetMap (OSM)
project, while social sensing may utilize the fact that certain streets or neigh-
borhoods are digitized and updated earlier and more frequently than others or
that people visit types of places during characteristic hours or in distinctive
sequences [9].

Social sensing offers great potential for applications in urban planning, trans-
portation, health, crime prevention, disaster management, and so on. For in-
stance, social sensing has been proposed as a method for crowdsourced earth-
quake early warning systems [10]. In this work, we focus on a technique called
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semantic signatures to extract and share high-dimensional data about types of
places and neighborhoods. Semantic signatures are an analogy to spectral signa-
tures that play a crucial role in remote sensing. While these spectral signatures
uniquely identify types, e.g., land cover classes, via characteristic reflectance or
emittance patterns in the wavelengths (called bands) of electromagnetic energy,
semantic signatures utilize data traces from human behavior. Just like libraries
of spectral signatures that have been used in fields ranging from agriculture to
studying the atmosphere of distant planets, semantic signatures can be used in
a variety of ways. In fact, we will discuss examples such as reverse geocoding,
geo-privacy, co-reference resolutions, and so forth.

To give an intuitive example, semantic signatures rely on the fact that peo-
ple frequently go to bakeries during the morning hours and are more likely to
mention them in the context of baking, coffee, cakes, sandwiches, and so forth,
while nightclubs show very distinct temporal patterns and would unlikely be
mentioned in a sentence together with baking. From an inferential perspec-
tive, this implies that an unknown place visited during Friday night, co-located
with other places visited during evening hours, and mentioned in the context of
drinks and dancing is very unlikely to be a bakery, but rather a bar or nightclub.
Each data collection and analysis method introduced in the following Section 2
to 4 can be seen as a semantic band, and any combination of these bands that
uniquely identifies a place type becomes a signature. For example, bars and
nightclubs may be difficult to tell apart by just looking at the hours and days
they are visited, but conversations about bars, e.g., in a local business review,
are more likely to mention “sports” or “taps”, while these terms are less likely
to occur in the context of nightclubs. Hence, combining thematic and temporal
data can help uniquely identify place types. It is worth mentioning that many
of these distinctions are intuitive to humans, but we need probabilistic models
to integrate these distinctions into computational models and workflows. Place
types themselves are a key component to geographic information retrieval, rec-
ommender systems, urban planning, and so forth, as they are a proxy for the
affordances [11], i.e., action potentials, of places and neighborhoods.

The remainder of this chapter is organized as follows. From Section 2 to 4, we
present an overview of spatial, temporal, and thematic signatures respectively,
and discuss the methods that can be used for extracting these signatures. In
Section 5, we outline a variety of examples from previous work to demonstrate
the values of these signatures by highlighting their usage. Finally, Section 6
summarizes this chapter and discusses future directions.

2. Spatial Signatures

Spatial signatures capture the characteristics of places through their distri-
butions over geographic space, as places of a given type often have a unique
pattern in which they appear and co-locate with other places. For example, the
distribution of mountains is likely to be different from that of hotels; and the
same comparison can be made for other urban points of interest (POI) such as
restaurants and schools.
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We adopt a set of spatial statistics, and use them to characterize the seman-
tics of place types. We call the collection of these type-wise statistics a spatial
signature [12]. These signatures have been employed for tasks such as align-
ing place types across different gazetteers (e.g., GeoNames, Getty Thesaurus
of Geographic Names (TGN) and DBpedia Places ) and POI datasets (e.g.,
Foursquare, Factual, and Google Places) to increase the interoperability across
different data sources. A variety of spatial statistics can be adopted to extract
spatial signatures. In the following, we describe 4 types of statistics using spe-
cific examples. A more comprehensive discussion on many other statistics can
be found in our previous work [12].

Spatial Point Pattern. As geographic information in most gazetteers and so-
cial media are stored in the format of point-features, i.e., without more detailed
geometries, we first describe techniques from spatial point pattern analysis to
quantify the point distribution of feature types across a study domain. Both lo-
cal and global point patterns can be extracted. Regarding local point patterns,
both intensity-based (e.g., local intensity and kernel density estimations of local
areas) and distance-based analysis (e.g., nearest neighbor analysis, Ripley’s K,
and standard deviational ellipse analysis) are employed. These statistics are
supposed to capture spatial arrangements of points in a local scope. With re-
spect to global point patterns, we compute the points intensity and estimate
their kernel density on a global scale to capture their global spatial distribution.
Corresponding statistics, such as the range of Ripley’s K and the bandwidth of
kernel density estimations are selected from these statistics. Figure 1 illustrates
a comparison between the place types of Park and Dam in terms of their point
patterns using Ripley’s K. It shows that parks in the DBpedia Places dataset
are more clustered compared to dams, as the observed curve (solid black line)
of parks deviates more from the theoretical one (dotted red line) which is built
under complete spatial randomness (CSR).

Figure 1: Ripley’s K of Park (left) and Dam (right) from DBpedia Places.

Spatial Autocorrelations. In addition to spatial point pattern analysis in
which the distribution of points is the main focus, spatial autocorrelation anal-
ysis is adopted with a focus on investigating spatial interactions among features
represented by point geometries. Second-ordered interaction analysis, Moran’s
I, and semivariances, are utilized in this group. Moran’s I quantifies how intensi-
ties of cells differ from their neighbors, and semivariances measure the variation
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of cell intensities in a specific distance lag class. For semivariances, we select
values at the first, median, and last distance lags as bands for our spatial signa-
tures as they represent variation on small, median and large scales, respectively.
Figure 2 shows that the patterns of spatial autocorrelations (e.g., the nugget,

Figure 2: Experimental semivariogram of Park (left) and Dam (right) from TGN.

range, sill, and the trend) are different between Park and Dam in TGN.
Spatial Interactions with Other Geographic features. This group of statistics

extends spatial signatures to consider the interactions between target place types
and other geographic information. Such external information can be population-
based, climate-based, or utilizing road networks. One of the reasons to choose
these types of data is that they are semantically rich. For instances, features
such as mountains are less likely to occur in densely populated areas while the
opposite is true for hospitals. Likewise, the frequency distributions of nearest
road types for Amusement Park and Restaurant are significantly different (see
Figure 3). Amusement parks are more likely to be located on avenues, while
restaurants have a higher chances to be located on roads.

Figure 3: Histogram of road types for Amusement Park (left) and Restaurant from Google.

Place-based Statistics. In addition to the aforementioned traditional spatial
analysis, place-based statistics can be used to characterize the semantics of place
types as well. In contrast to spatial statistics, they focus more on describing the
topological and hierarchical relations between places. In our case, for example,
the number (and entropy) of distinct states (or counties) a place type occurs
in, as well as the number (and entropy) of adjacent states (or counties) that
also contain features of the target type, are included to indicate the topological
relation (e.g., contains and meets) between places and administrative regions.
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Table 1: A summary of the 41 statistics for spatial signature.

Spatial Point Pattern Spatial Autocorrelations
Spatial Interaction

with Other Geographic Features
Place-based statistics

Local

Intensity

Global Moran’s I

Population

min Number of distinct
states (or counties)Mean distance to

nearest neighbor
max

std. of distance
to nearest neighbor

mean
Entropy of

states (or counties)
Kernel density

(range)
std. Number of adjacent

states (or counties)
that have the

same feature type

Kernel density
(bandwidth)

Road Network

min of shortest distance

Ripley’s K
(range)

max of shortest distance

Ripley’s K
(mean deviation)

mean of shortest distance Number of distinct
feature types for
nearest neighbor

std. ellipse
(rotation) Semivariogram

(first distance lag)

std. of shortest distance

std. ellipse
(std. along x-axis)

entropy of nearest
road types

Entropy of feature
types for

nearest neighbor
std. ellipse

(std. along y-axis)

Climate

mean
precipitation

Global

Intensity Semivariogram
(median distance lag)

std.
precipitation

LDA-based
approach

Mean KL
Divergence
of the topic
distribtion

mean
temperature max

std.
temperature max

Kernel density
(range)

mean
temperature min

Semivariogram
(last distance lag)

std.
temperature min

Entropy of
the topic

distributionKernel density
(bandwidth)

mean water
vapor pressure

std. water
vapor pressure

These statistics are beneficial in terms of distinguishing feature types such as
Glacier (which occur in eight US-states according to DBpedia) and River (which
occur in all states). Several other kinds of place-based statistics can be used
to uniquely tell apart places of certain types. The used statistics are listed in
Table 1.

In summary, spatial signatures are formed by bands extracted from spatial
and place-based statistics to uniquely identify place types based on their in-
teractions with other features and alternative sources of geographic data, e.g.,
climate classifications. Put differently, given a set of statistics about places we
can successfully identify their types and we can compare these types, e.g., to
study their similarity.
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3. Temporal Signatures

Though geospatial properties of place play a key role, there are additional
dimensions, or attributes, that help to differentiate places from one another. In
fact, it is the combination of properties and attributes that contribute to one’s
understanding of place. A dimension of place that is of substantial importance
to this cause is that of time. There is a temporal component to our definition of
place types, one that is reflected in our representation of semantic signatures.

A metro station, for instance, is a very different place at 9am on a Monday
than at 3am on a Saturday just as the Roman Colosseum serves a very different
purpose today than it did nearly 2000 years ago. The same geographic space
can change dramatically depending on the time of day you visit it, day of the
week, or season of the year.

The ubiquity of sensor-rich mobile devices has given rise to applications
that offer opportunities for users to contribute and share sensor information.
Many of these applications and platforms use a gamification model to coerce
users into contributing information that can be curated, sold, or analyzed to
better understand topics ranging from human urban mobility patterns to health
and exercise monitoring. Local business and social platforms such as Yelp and
Foursquare offer services that allow users of their platform to check-in to the
digital representations of local POI [13, 14]. In essence, the process of checking
in is the social media equivalent of telling your friends (or the public) that you
are at a specific place at a certain time. The underlying place gazetteers consist
of rich datasets which contain place attributes ranging from photographs and
reviews to curated, user-contributed hierarchies of place types.

Restaurant
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5
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0
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5
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0

Su M T W Th F Sa

Figure 4: Hourly check-in patterns aggregated to one week for the Restaurant place type.

Accessing these check-ins gives urban researchers an unprecedented oppor-
tunity to examine the temporal visiting behavior of individuals to a plethora of
place types. Through querying data from the public-facing Foursquare appli-
cation programming interface (API), previous work accessed approximately 3.6
million check-ins to 1 million POI from 421 place types across the United States,
United Kingdom, and Australia. Check-in counts per place type were cleaned
and aggregated to the nearest hour of day and day of the week. This results in
place type specific temporal signatures such as the one shown in Figure 4. This
figure demonstrates visiting behavior to restaurants in Los Angeles, CA at an
hourly resolution over the course of an average week. We can clearly identify
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days of the week based on cyclical daytime vs. night-time patterns (e.g., limited
number of check-ins at 2am). The peaks in the figure reflect the typical busy
times at a restaurant, namely lunch and dinner time with a slight reduction in
the volatility of the popular times on Saturday and Sunday.

Weekday Weekend

Weekday / Weekend
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Figure 5: Aggregating temporal signatures at three different scales: (a) Weekdays vs. Week-
ends (b) Days of the Week (c) Hours of the Day.

These temporal signatures can be further manipulated to explore patterns
at a variety of temporal scales. Figure 5 shows the typical Restaurant place
type visiting behavior for weekdays vs. weekends, days of the week, and hours
of the day. Depending on the use case, these temporal aggregates can be used
to inform anyone from transit and urban planners to police and commercial
entities.

4. Thematic Signatures

So far, we have discussed how models of place can be developed based on
their geospatial distributions (i.e., spatial signatures) and the temporal charac-
teristics of human-place interactions (i.e., temporal signatures). In this section,
we take a thematic perspective to formalize place, and will present the concept
of thematic signatures. In his seminal work [15], Tuan defined place as space
filled with human experience. While human experience is often an intangible
concept, people use language to describe their perceptions, feelings, and attach-
ments towards places. Traditionally, many of these human descriptions were in
oral form and were ephemeral. In today’s big data era, and with the support of
various web 2.0 platforms, such descriptions are often automatically recorded in
various data sources, such as online reviews (e.g., review comments on restau-
rants, hotels, and state parks), travel blogs, and social media posts. These large
volumes of data enable large-scale, computational studies of human experiences
towards places.

Thematic signatures, therefore, aim to capture the characteristics of place
types based on the natural language descriptions from people, which serve as
a proxy of human experiences. Different places are often situated in different
environments and functionalities that afford various sets of human activities [16].
Accordingly, different terms tend to be used by people when describing different
places. Intuitively, we are more likely to use terms, such as hike, camping,
waterfall, and nature, when describing a state park. By contrast, terms such
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as movie, popcorn, seat, and ticket are more likely to be used when we describe
experiences related to cinemas. In relation to spatial and temporal signatures,
thematic signatures provide an additional and complementary perspective for
understanding and modeling places and their types.

How can we extract such thematic signatures to represent places? The data
sources for deriving signatures are descriptive words conveying human expe-
riences. Depending on the way we organize place descriptions, we can extract
thematic signatures at both the place-instance level and place-type level. At the
place-instance level, we focus on the descriptions for a specific place instance.
For example, we can analyze the reviews for a restaurant, Bob’s BBQ joint, from
different people, and learn the main topics that are generally mentioned about
this restaurant. At the place-type level, we can aggregate the descriptions for
all place instances belonging to the same place type, and extract the thematic
signatures for this place type. For example, we can aggregate the reviews for
all restaurants in a dataset, and learn the main topics related to the place type
Restaurant. Aggregated over millions of reviews, these signatures provide a rich
representation of place types. Both types of thematic signatures are useful and
can be applied to different situations.

A variety of computational models can be utilized to derive thematic signa-
tures for places based on their related natural language descriptions. A simple
approach is term frequency and inverse document frequency (TF-IDF) from the
field of information retrieval [17]. TF-IDF is based on the bag-of-words model
which highlights the words that are used frequently in a document and not
very frequently in other documents [18]. For the task of extracting thematic
signatures, we can adapt TF-IDF to identify the words that show up frequently
in one place instance or place type but not so frequently in other places. The
adapted version of TF-IDF is:

wij = tf ij × log
|P |
|Pj |

(1)

where wij is the weight of a term j for place i, tf ij is the frequency of term j
used in the descriptions of place i, |P | is the total number of places, and |Pj |
is the number of places whose descriptions also contain the term j. Once we
have computed the weights for different terms related to a place, word clouds
can be employed to visualize the top terms related to a place. These terms with
distinct weights can then be used as thematic signatures for places. Figure 6
shows the word clouds based on the reviews of two place types: Asian Restaurant
and Stadium. We can tell the general place types of these two examples even
without looking at their place type labels.

Latent Dirichlet allocation (LDA) [19] is a more advanced approach which
extracts the major topics associated with different place types. Compared with
TF-IDF, LDA is more robust to noise contained in the textual descriptions,
handles synonyms, and can capture the semantic relatedness between words.
LDA is a generative model which considers each textual document as generated
from a probabilistic distribution of topics and each topic as characterized by
a distribution over words. As an unsupervised model, LDA discovers semantic
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Figure 6: Word clouds for two place types: (a) Asian Restaurant ; (b) Stadium.

topics from the texts without requiring labeled data. Accordingly, each place
type or instance can be characterized by the probabilities of different semantic
topics based on the related textual descriptions [20, 21]. Figure 7 shows the
LDA topic distributions of two place instances: Right Proper Brewing Co. and
Moon Under Water Pub & Brewery. Both examples are of the same place type

Figure 7: Probability distribution of the LDA topics of two pubs.

(i.e., Pub), and thus share similarities in terms of their topics, such as topic 6,
topic 13, and topic 24. However, we can also identify the topics under which
the two pubs show different characteristics, such as topic 37.
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5. Examples

In this section we briefly showcase six examples for studying and applying
semantic signatures including basic operations such as place type comparison
as well as more specific applications such as improving geo-privacy.

5.1. Comparing Place Types

Due to the semantic heterogeneity of place types, tasks such as query feder-
ation, data integration, and conflation become challenging. Therefore, semantic
signature has been applied to compare and align place types across different
geospatial data sources. In our work, semantic signatures extracted from all
three perspectives (i.e., spatial, temporal, and thematic) can be represented
as vectors. Let p1 and p2 represent two place types, then two vectors can be
constructed based on their semantic signatures:

p1 = < f11, f12, . . . , f1D > (2)

p2 = < f21, f22, . . . , f2D > (3)

where f ij represents a (normalized) feature of the semantic signature (e.g., the
range of Ripley’s K, or the probability of a LDA topic).

With such vector representations, we can measure the semantic similarity
between place types using several approaches. One is cosine similarity, which is
defined as:

s(p1, p2) =

∑D
j=1 f1jf2j√∑D

j=1 f
2
1j

√∑D
j=1 f

2
2j

(4)

Cosine similarity measures the angle of the two vectors constructed from seman-
tic signatures, and is robust to the different magnitudes of values in the vectors.
Therefore, cosine similarity is especially suitable for semantic signatures whose
vector element values can be largely different. When the vector elements are
in probabilities (e.g., topic distribution in thematic signatures), we can also
use measurements, such as Jensen-Shannon divergence (JSD), which measures
the similarity between two probability distributions. Equation 5 and 6 show
the calculation of Jensen-Shannon divergence, where KLD(P ||Q) is the Kull-
backLeibler divergence between two discrete probability distributions P and Q
(which are the semantic signatures of the two places to be compared).

JSD(P ||Q) =
1

2
KLD(P ||M) +

1

2
KLD(Q||M) (5)

KLD(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(6)

In this section, we demonstrate the usage of both spatial and temporal sig-
natures on comparing place types.
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5.1.1. Comparison using Spatial Signatures

Figure 8 depicts a 2D visualization of similarities and differences among
place types of three gazetteers: DBpedia Place, GeoNames, and TGN after
mapping their high dimensional spatial signatures into 2D using multidimen-
sional scaling (MDS). In general, it can be observed that place types from these
gazetteers overlap significantly. Furthermore, three cases are illustrated to show
the strength of spatial signatures in aligning specific place types. Case 1 in Fig-
ure 8 shows that the parks in DBpeidia Places and TGN are semantically similar
compared to the one in GeoNames. This makes sense as the GeoNames gazetteer
includes almost all known places such as parks, while DBpedia Places and TGN
only record those that are significant in some senses, e.g., historically or cultur-
ally. As another example, Case 2 demonstrates that although the same label of
a specific place type is shared by the three gazetteers, Mountain in this case,
their semantics do not align with each other. This case is common across dif-
ferent geospatial ontologies as they are mostly designed by domain experts with
certain applications or domains in mind. Semantic signatures have the ability
to quantify such ontological commitments. In Case 3, three place types that
have totally different labels, i.e., AMD2, County, and AdministrativeRegion, are
shown to be semantically similar, all representing countries, when using spatial
signatures. Such alignments are difficult to establish if only string matching and
structural similarities are considered. In summary, by using spatial signatures,
one can quantify and subsequently improve the alignment of place types across
geospatial ontologies and gazetteers.

Figure 8: 2D visualization of the alignment of place types across DBpedia Places, GeoNames
and TGN. Case 1: Park, Case 2: Mountain, Case 3: County. (Each dot represents a place
type)

5.1.2. Comparison using Temporal Signatures

Exploring different place types, we find that many place types have a unique
temporal signature and that these signatures can in fact be used to assess the
similarity between place types. Figure 9 shows the hourly pattern for air-
ports. Compared to the Restaurant temporal signature, airports are relatively
a-temporal with few peaks throughout the day and limited access at night.
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Figure 9: Hourly check-in patterns aggregated to one week for the Airport place type.

To give another example, the temporal signature for Church shows a clear
increase in popularity on Sunday morning with smaller peaks on Sunday and
Wednesday evenings.
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Figure 10: Hourly check-in patterns aggregated to one week for the Church place type.

Through assessing the similarity of the temporal signatures, we achieve a
better understanding of urban visiting behavior as well as an appreciation of
the complexity of modeling the urban landscape. With the goal of better under-
standing the role that these place types play in defining the city, we developed
the POI Pulse1 observatory, a web-based visual platform for exploring interac-
tion between people and places within the city of Los Angeles, CA [22]. In this
work, the similarity between the temporal signatures is assessed along with both
the geospatial (Section 2) and thematic (Section 4) signatures using information
entropy to classify the numerous place types into lower level categories. These
lower level categories provided the foundation on which to visually depict the
pulse of the city through marker opacity and color.

5.2. Co-reference Resolution across Gazetteers

In addition to aligning place types using spatial signatures, which is discussed
in 5.1.1, this subsection outlines an approach for using spatial signatures to
match individual geographic features between gazetteers, named as co-reference
resolution. In addition to conventional approaches, such as string and struc-
ture matching, spatial signatures can be adopted to capture the fact that places
have a spatial context that can be used as part of the co-reference resolution

1http://poipulse.com/
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process[23]. The city of Kobani, Syria is selected here as an example to illustrate
the power of spatial signature, due to its military and geographic importances
but also its high ambiguity in different gazetteers (i.e., there are several dissim-
ilar toponyms for Kobani including Aarab Peunar, Kobane, and ’Ayn al’ Arab).
The type-level and instance-level spatial signatures can be combined to match
the Kobani from DBpedia Places to GeoNames which has in total 5 candidates
that cannot be easily matched using conventional approaches. Euclidean dis-
tance is used to compute the dissimilarity between candidates and the target in
terms of their representations using spatial signature; the candidate that has the
smallest dissimilarity to the target is regarded as the match. Experiments show
that although one of the candidates in GeoNames is also labeled as Populated-
Place, by taking spatial signatures into account, the Kobani in DBpedia Places,
labeled as PopulatedPlace, can still be correctly matched to Ayn al ’Arab in
GeoNames, which is labeled as Seat of a Second-order Administrative Division
[23].

5.3. Geoprivacy

Concerns over location privacy have seen a resurgence in recent years. Mo-
bile devices today are ubiquitous and the sensors available on these devices allow
for the collection and distribution of a wide variety of contextual information.
In combination with the social web, private information is being shared and dis-
tributed at an alarming volume and velocity with arguably little understanding
as to the ramifications. The concept of semantic signatures sits very much in
the midst of this concern over the sharing of private data as much of the digital
footprints that we leave can be curated and compared to the platial data signa-
tures that have been extracted from millions of online sources. For instance, it
is possible to substantially limit the possible locations that someone may be at
purely based on the textual data that they choose to share online. A microblog
post containing the text ”looking forward to burritos and tequila” posted at 5pm
on a Friday in Los Angeles, for instance, provides a high amount of informa-
tion that can be matched against our probabilistic signatures. The text itself
contains references to Mexican food and alcohol while the timing of the post
indicates a likelihood that the person posting the material will be going to a
restaurant rather than a nightclub. Accessing the plethora of freely available
gazetteers we can limit the possible locations for the person that created the
post [24]. Such an approach does not require access to actual geographic loca-
tion information. Following the same thought process, signatures can also be
used to foster geo-privacy, namely by showing which terms and times are most
indicative of a certain activity and place. For instance, replacing ‘tequila’ with
‘drinks’ and sending out the message an hour before may increase information
entropy to a degree where identifying a place may be less likely [24]. Further
work in this area has focused on spoofing one’s location and interests based on
the inclusion of contextually-relevant noise [25] while previous work has focused
on the obfuscation of personal identifiable information [26].
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5.4. Temporally-enhanced Geolocation

Information related to the temporal dimension of places can be useful in a
number of everyday scenarios as well. Take, for example, the process of geolocat-
ing, or reverse geocoding. This is a geographic querying method that is executed
by millions of people a day as they request the nearest place instances to them
based on provided geographic coordinates. Standard approaches to geolocating
take a pair of latitude and longitude coordinates (e.g., from a GPS-enabled mo-
bile device) and return a set of nearby places (e.g., Dan’s Automotive Shop or
Handlebar Coffee Shop). The problem with this approach, however, is that it
makes the erroneous assumption that one has the same likelihood of being at a
place, regardless of the time of day or day of the week. In actuality, we know
that the probability of somebody being at a pub on a Friday at 11pm is signifi-
cantly higher than the probability of a person being at the Department of Motor
Vehicles. Socio-institutional affordances [27] aside, temporal signatures gener-
ated from the visiting behavior of millions of individuals clearly demonstrate
that there are unique temporal patterns in how people interact with different
place types.

Exploiting these temporal patterns, existing work shows that traditional
distance-only based approaches to reverse geocoding can be augmented through
the inclusion of these time-based probabilistic models [28]. In fact, we show,
through a comparison of various methods for including time in such a process,
that a temporally-enhanced geolocation method can improve upon the accuracy
of the distance-only based method by over 24% (based on a Mean Reciprocal
Rank assessment). Such work in combination with others has led to the addition
of Popular Times plots being included in major mapping and local business
platforms [29].

5.5. Regional Variation

The value of temporal signatures built from geosocial visiting behavior in
a single city such as Los Angeles, CA is one thing, but building temporal sig-
natures for cities around the world is different in that there will be cultural
differences. The question remains as to the uniqueness of place type interac-
tions depending on region. Using check-in data collected from across the United
States, Australia and the United Kingdom, the check-ins are split by major
cities. Focusing on the cities of Los Angles, CA, Chicago, IL, and New York
City, NY, we find that there are significant differences in how the inhabitants
interact with place types. Using the Watson’s Two-Sample Test, we show that
approximately 50% of place types vary significantly (p < 0.05) in their temporal
signatures [30], while others remain invariant. Figure 11 shows temporal signa-
tures for two place types split by U.S. city. What this work demonstrates is that
the temporal visiting behavior of some place types is a-spatial, e.g., Drug Stores,
while other are regionally variant, e.g., Theme Parks. Additional research on
cities outside the United States, namely Sydney, Australia, and London, UK,
support these findings, on a more restricted place type dataset. These result
also confirm previous research on the habitual behavior of humans in an urban
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setting. The findings that roughly 50% of place type temporal behavior is a-
spatial is of importance for the usefulness of such signatures as well, as it implies
that only half of these temporal signatures have to be acquired at a local level
for tasks such as reverse geocoding mentioned in Section 5.4 while the other
50% opf place types can be well represented using a single, global signature.

(a) Los Angeles (b) Chicago (c) New York City

(d) Los Angeles (e) Chicago (f) New York City

Figure 11: Circular plots depicting hourly temporal signatures for Theme Park (a,b,c)
and Drugstore (d,e,f).

5.6. Extraction of Urban Functional Regions

Cities support a variety of human activities including living, working, shop-
ping, eating, socializing, and recreation, which usually take place at different
types of POI. Compared to other datasets and methods in remote sensing and
field mapping, using POI data, social media etc., and associated social sensing
methods can lead to a better understanding of individual-level and group-level
utilization of urban space at a fine-grained spatial, temporal, and thematic
resolution[7]. We use POI that support specific types of human activities on
the ground as a proxy to delineate regions with various co-location patterns of
POI types [31]. The same type of POI can be located in different land use types
and may also support different functions. For example, restaurants are found in
residential areas, in commercial areas, as well as in industrial areas. The main
function of the POI-type University is education, but they also support sports
activities, music shows, and so on. We argue that the semantic signatures of
POI types can be employed to derive latent classification features, which will
then enable the detection and the abstraction of higher-level functional regions
(i.e., semantically coherent areas of interest) such as shopping areas, business
districts, educational areas, and art zones in cities. We collected large-scale
datset of Foursquare venues and associated user check-in data in the most pop-
ulated U.S. cities. Based on the aforementioned data processing procedures and
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the LDA topic models by incorporating the popularity score based on unique
Foursquare check-in users, we can infer the probabilistic combination of different
topics composing a urban function for a region given POI type co-occurrence
patterns. For the city of Denver, for instance, we were able to discover [31] a
high relevance of the topic Topic 25, which consists of a variety of prominent
POI types such as art museum, art gallery, history museum, concert hall and
American restaurant. Such a place may serve multiple functions. The second
most prominent LDA topic in this region is Topic 121 that contains a large per-
centage composition of brewery places. In fact, the region in Denver for which
the signatures revealed a dominance of these topics is known as the “Santa Fe
Dr.”, an “Art District” which attracts many local residents, artists, and tourists.
This example illustrates the inference capability of our method in identifying
urban functional regions given thematic signatures.

6. Summary

In this work we have presented an overview of spatial, temporal, and the-
matic signatures by discussing the utilized data, the methods to compute and
compare signatures, and by providing a variety of examples from our previous
work. These examples range from reverse geocoding, neighborhood extraction,
co-reference resolution, and ontology alignment to geo-privacy. We have also
addressed the question of how local these signatures are, i.e., whether their
quality decays when applied to other geographic regions. The results depend
on the studied place types and while some types show high variation, others
do not. Consequently, global signatures can be augmented with locally trained
data to improve results. Recently, there has been increased interest in utilizing
embedding techniques to compare place types [32, 33] and early results show
that these techniques yield results that strongly correlate with human similarity
judgments. Utilizing such techniques for the creation of semantic signatures will
be one of the directions for future work.
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