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Abstract
In recent years we have witnessed explosive growth in the shared, free-floating, electric scooter industry. While still
controversial in many North American cities, a number of large e-scooter operators have managed to carve out a piece
of the urban transportation landscape. As these vehicles shift from novelty services to increasingly reliable modes of
short personal travel, the discussion has turned to investigating who exactly benefits from these micromobility services
and who are being left behind. Though population surveys have been administered to identify the socio-demographic
characteristics of e-scooter riders in the past, little work has linked these characteristics through trips, or investigated
the regional variation in these demographic factors. In this work we explore the variability and similarities in e-scooter
rider characteristics across three major U.S. cities. To accomplish this, we apply a Moran’s Eigenvector Spatial Filtering
linear regression model and compare our results to more commonly used spatial regression approaches. Our results
indicate that the spatial filtering approach outperforms other methods in identifying socio-demographic characteristics
of e-scooter users, across multiple regions. We find that many socio-demographics associated with e-scooter usage
are regionally variant, despite younger users making up the core user base in all cities. There are variations in usage
based on gender, income, and race across cities with Black and Hispanic populations remaining underserved. The
implications of these findings are discussed.
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Introduction

The introduction of free-floating electric scooters (e-
scooters) as a commercial mode of personal travel
substantially disrupted transportation ecosystems in many
cities around the world. By the end of 2018, dozens of e-
scooter companies were operating large fleets of vehicles
in hundreds of cities around the world. Initially presented
as a solution to the last mile problem, these e-scooters are
a relatively inexpensive option for short trips within a city,
compared to personal automobile ownership. A user can rent
an e-scooter simply by downloading a mobile application,
adding payment details, and unlocking/locking any available
vehicle through their mobile device. The dockless aspect
of these systems means that, in most cities, vehicles can
be parked on any public property and are not restricted
to docking stations such as those installed by traditional
municipal bike-sharing systems. While adoption of this new
mobility technology was initially met with resistance from
both the public and municipal regulators, many cities have
now committed to the expansion of free-floating e-scooter
systems.*† Despite the Covid-19 pandemic, there has been
considerable growth in e-scooter adoption in a short amount
of time. In 2022, the U.S. Department of Transportation
(2022) estimated that there are over 300 e-scooter systems
serving 158 cities across the United States. A recent study
by Polaris Market Research (2022) estimates that the global
e-scooter market size will reach almost USD$51 Billion
by 2030.

Despite this growth, there is still a dearth of knowledge
related to who these e-scooters are benefiting. Mobility
patterns are largely influenced by regional variations
in historical development and urban planning decisions
(Gössling et al. 2016). Every city’s unique socio-economic
and geo-demographic characteristics shape its mobility,
apparent in e-scooter usage patterns between and within
cities (Caspi et al. 2020). While cities differ in their mobility
needs and challenges, it is important to understand how these
varying patterns emerge across urban regions to develop
effective strategies for managing these systems. In this study,
we compare regional variation in e-scooter usage across
three e-scooter systems in Washington DC, Portland, and
Atlanta. Of these cities, Washington DC has the highest
population density, followed by Portland and then Atlanta.‡

Average walkability scores also exhibit a similar trend, with
Washington DC maintaining the lowest car ownership per
household. The downtown areas of Washington DC and
Portland are the primary centers for jobs and businesses,
whereas in Atlanta, they are split between multiple business
districts throughout the city. Space-use in core urban areas,

1Platial Analysis Lab, McGill University, Montréal, Canada
Email: priyanka.verma@mail.mcgill.ca, grant.mckenzie@mcgill.ca
∗https://www.portland.gov/transportation/escooterpdx/next-steps-2022-
2023
†https://www.nyc.gov/html/dot/html/pr2023/e-scooter-sharing-program-
queens-expansion.shtml
‡See Figure S6 in the supplementary material

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Environment and Planning B XX(X)

where most micromobility services prefer to operate, is
distinct from surrounding areas as core business districts are
largely concentrated within this region (Gong et al. 2016).
As a result, core parts of the city facilitate unique trips
due to employment opportunities, centralized resources (e.g.,
retail, hospitals, universities, ports etc.) and existing mobility
alternatives (metro, rail, buses, streetcars, or other).

In many city governments, ensuring access to affordable
transportation is a top priority. To address inequities that
people face in getting around a neighborhood or city,
municipalities regulate where these services are operated
(Riggs et al. 2021). Since the introduction of e-scooters in
2017, regulators in Washington DC have been working to
make micromobility services more accessible outside the
city center. In 2020, the city enforced a limit of 1,000
vehicles per operator in core business areas and defined
equity zones to improve vehicle deployment in low-income
and disadvantaged racial groups.§ To ensure accessibility,
municipal governments in Portland and Atlanta require e-
scooter operators to offer affordable pricing options for
lower-income individuals.¶||It is essential that we better
understand who are using these services, who are not being
served, and how this new mode of transportation may be
contributing to inequities within our cities.

Millions of dollars are invested in public transit, active
transportation, and urban infrastructure every year. There is,
however, limited public space on which to travel and while
the addition of e-scooters to this ecosystem has increased
the variety of modes of transport, it has been shown to
replace trips that would have been taken by other means
(e.g., walking, driving). While we have some knowledge
of the population that walk and drive, far less is known
about those that use e-scooters. In order to develop policy
to address inequities in access to e-scooter systems, we must
first understand who are taking e-scooter trips and how these
populations differ between cities.

While a number of studies have investigated the socio-
demographics of e-scooter usage in cities, few of them have
taken a geostatistical approach to look at trip origins and
to our knowledge, none have conducted socio-demographic
spatial analysis of these systems across urban regions. In
this work we take a new approach to analyzing this type
of data by controlling for spatial autocorrelation in the
data through a Moran’s eigenvector spatial filtering (MESF)
model. We test this approach using a range of spatial weight
matrices and compare this method to more commonly used
spatial regression models such as spatial lag and spatial
error. In analyzing the spatial patterns of our independent
variables across regions, we are able to better understand
the similarities and differences in e-scooter users. Such
exploratory analysis is necessary in order to identify how
cities differ in their usage behavior and to what extent some
communities are being underserved. With these objectives in
mind, our work aims to address the following three research
questions (RQ).

RQ1 Are the associations between socio-demographics
and shared e-scooter users regionally variant? More
specifically, is there regional variation between the
cities of Washington DC, Portland OR, and Atlanta
GA in the United States?

RQ2 Can the MESF technique effectively account for
underlying spatial patterns? How well does this
technique capture correlations between e-scooter trips
and socio-demographic patterns across three different
regions?

RQ3 How does MESF perform in comparison to more
traditional geospatial analysis techniques such as
spatial lag or error models? Does the inclusion of
spatial eigenvectors improve model performance?

Background
While e-scooter usage varies by city, it tends to be highest
in central business districts, areas of high employment,
and around university campuses (Bai and Jiao 2020). In
general, population density appears to have a strong positive
correlation with e-scooter usage (Reck et al. 2021; Zuniga-
Garcia and Machemehl 2020). These services have been
shown to primarily substitute trips that would have been
made on foot, followed by trips on public transit (Speak et al.
2023; Sanders et al. 2020). This confirms previous findings
that report a positive association between walkability and the
availability of other public transport services (Caspi et al.
2020; Hosseinzadeh et al. 2021). Thus, e-scooter services
may fulfill the first and last-mile transportation gap in some
cities (Reck et al. 2021; Liu et al. 2019). Previous work
has shown that e-scooter users prefer to ride in areas with
designated bike lanes or lower speed limits (PBOT 2018;
Nikiforiadis et al. 2021). These findings are consistent with
existing research that suggests a strong positive correlation
between the availability of bike infrastructure and e-scooter
usage (Caspi et al. 2020; Reck et al. 2021). Related, e-
scooter users exhibit a willingness to travel longer distances
to access bike lanes (Zhang et al. 2021). Additionally, the
presence of a sidewalk and limited automobile traffic is
important for e-scooter riders (Tokey et al. 2022; Zhang
et al. 2021). Furthermore, a positive correlation between e-
scooter usage, areas with high commercial land use, higher
diversity in land-use types, and intersection density has
been observed (Bai and Jiao 2020; Caspi et al. 2020).
Parks and commercial areas are positively associated with
higher usage, whereas higher industrial land use is negatively
correlated in some cities (Bai and Jiao 2020; Hosseinzadeh
et al. 2021).

Differences in how e-scooter services are utilized can
lead to variations in the socio-demographic characteristics of
users across cities. According to a survey from Portland’s
e-scooter pilot program, the majority of residents viewed e-
scooters favorably, particularly younger populations, people
of color, and those from lower-income groups (PBOT
2018). These findings are consistent with Baltimore’s
pilot study, which reports e-scooters to be popular among
younger populations and among African American and
Hispanic groups (Young et al. 2019). However, studies also

§https://ddot.dc.gov/sites/default/files/dc/sites/ddot/2019.11.6 Shared dock-
less 2020 Terms and Conditions scooter.pdf
¶https://www.portland.gov/transportation/regulatory/escooterpdx/low-
income-pricing-plans
‖https://www.atlantadowntown.com/cap/areas-of-
focus/downtownconnects/scooters
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report limited access to e-scooter services among minority
populations, especially Hispanic and African American
groups (Bai and Jiao 2021; Sanders et al. 2020). For example,
in Baltimore, 75% of e-scooter users were white despite only
making up 30% of the population. Additionally, ridership
surveys show males appear to favor e-scooters more than
females (PBOT 2018; Denver Public Works 2019). In some
cities, where e-scooters are available on university campuses,
students constitute a large portion of e-scooter users (Bai and
Jiao 2020; Liu et al. 2019; Caspi et al. 2020). In contrast,
in Washington DC and Baltimore, where leisure trips are
reported to be the most popular type of trips, e-scooters tend
to be used by a larger population (McKenzie 2020; Young
et al. 2019).

Various modeling techniques, both non-spatial and spatial,
have been used to explore the association between socio-
demographics and built environment with e-scooter usage.
Only a few studies have explored the variability in this
relationship across cities. Huo et al. (2021) and Younes
and Baiocchi (2022) used a Negative Binomial Model
approach to understand determinants of e-scooter usage
across multiple cities. They report that built environment
factors including intersection density, road network, and
employment are positively correlated with e-scooter usage
across cities. Younes and Baiocchi (2022) also report that the
proportion of minorities (Black or Hispanic) and low wage-
employment within a census block group are negatively
correlated with usage in all cities. Bai and Jiao (2020)
compared e-scooter trip usage in Austin and Minneapolis
using a similar approach and report that lower income
and higher education were positively correlated with e-
scooter trips in both cities, largely due to a high number of
university students using these services. However, Zuniga-
Garcia and Machemehl (2020) used a Spatial Error model to
explore this relationship in Austin and report that household
income, racial backgrounds, or age were not significant in
determining e-scooter trip origin or destination.

Considerations for space in statistical models are often
addressed using hot-spot analysis to implicitly consider
spatial dependence. Younes and Baiocchi use hot-spot
analysis and an individual Negative Binomial model for
each city to model the relationship between e-scooters,
socio-demographics, and the built environment. Bai and
Jiao (2020)’s multi-city approach used hot-spot analysis
to understand the relationship between e-scooters, socio-
demographics, and built environment factors but exclusively
focused on regions that were identified as hot-spots.
Huo et al. (2021) use a hierarchical linear model to
consider nested structures, enabling accommodations for
spatial dependence by explicitly considering scalar effects.
Additional work by Reck et al. (2021) applied a spatially
explicit Generalized Linear Mixed Model approach to
explore the association between the built environment
and e-scooter usage in Louisville. This work used spatial
aggregations at the census block level and observed
spatial autocorrelation. Reck et al. (2021) demonstrate
that correcting for spatial patterns improves model fit.
Ultimately, these models are limited by their capacity for
accommodating spatial dependence.

While the MESF technique is novel for socio-
demographic e-scooter analysis, a number of studies

have employed this technique in other domains. Brown
et al. (2022) used MESF with bike-share data to correct
for spatial autocorrelation in the regression residuals of the
non-spatial model. Similarly, Hochmair et al. (2019) applied
this technique with Strava bike data to account for spatial
autocorrelation observed in residuals of the non-spatial
model. Beyond micromobility systems research, MESF
has been used effectively to consider spatial dependence in
geographic applications. Xiao et al. (2017) applied MESF
in an OLS model to explore factors that influence housing
prices in Beijing.

Methodology

Data
We accessed data from a range of companies that operate
shared free floating e-scooters in Washington DC, Portland
OR, and Atlanta GA. A full list of operators is provided
in Table 1. For Washington DC and Atlanta, we retrieve
real-time e-scooter locations by initiating requests to each
micromobility provider’s publicly accessible Application
Programming Interface (API) at 60-second intervals. The
API response includes the vehicle’s unique identifier,
timestamp, and current geographic coordinates. If a vehicle
is not present in an API response, we assume that a trip
is in progress and use its last known location as the trip’s
origin. When the vehicle re-appears in the API response, we
consider it the destination, provided it has moved at least
100 meters since its last known location and the trip duration
is less than 2 hours. Additionally, we exclude any trips that
were traversed at speeds greater than 8 meters per second as
they likely represent re-balancing trips via truck. Trips where
a vehicle is marked as disabled are also disregarded as they
represent maintenance or recharging trips. This approach
to identifying trips has been successfully used in previous
research (blinded for review). Trip data for Portland OR
was retrieved from the Portland Bureau of Transportation
with trips being identified and shared by the micromobility
operators directly. Notably, the volume of trips for Atlanta is
smaller than the other two cities and only from one operator.
While not ideal, it does allow us to test the robustness of our
approach and assess the variation in demographic patterns
between a large and small set of trips.

Table 1. Trip counts, operators, and time frame by city.
City Trips Operator Time Period

Lime June-July, 2019
Lyft June-July, 2019

Washington DC 212,447 Skip Aug-Sept, 2019
Spin April-May, 2021

Razor June-July. 2021
Bolt June-July, 2019
Lime June-July, 2019

Portland OR 234,408 Razor June-July, 2019
Shared June-July, 2019
Spin June-July, 2019

Atlanta GA 79,160 Lyft June-July, 2019

We filtered the trip data to focus on the warmer months
when e-scooter usage is higher due to more favorable
weather conditions. Table 1 presents a summary of the total
number of trips, operators, and time periods from which the
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data were acquired. Data from 2020 is omitted from the
analysis as mobility was restricted during that year due to the
Covid-19 pandemic. In this study, we restrict our analysis to
trip origins. Given the free-floating nature of micromobility
services, the majority of trip destinations become trip
origins for another trip meaning there is little difference
between analysis using trip origins and analysis using trip
destinations. Provided our set of trip origins, we spatially
intersected them with census block groups (CBG) from the
U.S. Census Bureau (2019), allowing us to calculate the
total number of trips originating in each CBG. We observed
outliers in trip counts across all cities, causing the response
variable to deviate from a normal distribution. To address
the underlying assumption of normality within a linear
regression model, we applied a logarithmic transformation
to trip counts in each city.**

We acquired census socio-demographic data from the
2019 American Community Survey 5-Year estimates, from
the U.S Census Bureau. We used the finest spatial resolution
available for this time period, which was the CBG. The
socio-demographic variables for our analyses were grouped
by age, gender, race, and income. This information was
obtained for 449 CBGs in Washington DC, 441 in Portland,
and 313 for Atlanta. We normalized demographic variables
by the total population of the CBG and applied a mean
standardization for meaningful interpretation of model
results. As urban infrastructure and design may considerably
impact e-scooter accessibility and usage, we integrated
the National Walkability Index dataset from the U.S.
Environmental Protection Agency (2021) to control for built
environment factors in the model. Variables informing the
index include street intersection density, proximity to public
transportation, number of workers, and entropy measures for
various employment types (i.e., retail, office, or industrial).
We use the index as well as the number of workers and the
listed entropy measures to consider the built environment in
our models.

Analysis
Model Specification. Exploratory analysis of our indepen-
dent variables showed a strong correlation among socio-
demographic groups as well as built environment character-
istics. These findings align with previous research that report
a high correlation between population and employment den-
sity or age and income (Caspi et al. 2020). We used the
variance inflation factor (VIF) metric, which measures the
correlation between independent variables in a given model.
A VIF closer to 1 indicates a weak correlation, whereas a
value above 5 indicates a strong correlation. We found a high
degree of multicollinearity in our model, particularly with
certain race and income variables, which can lead to inflated
coefficient estimates (Shrestha 2020). To address this issue,
we set a VIF threshold of 5, a commonly accepted value,
supported by the literature, to correct for multicollinearity in
independent variables. We removed any socio-demographic
variables exceeding this threshold from our final models.

Next, we used Moran’s Index, I (Moran 1950) to
examine the presence of spatial autocorrelation in trip
origins and residuals of the exploratory linear model. The
analysis is presented in detail in the supplemental material.

Results reveal significant spatial autocorrelation in both the
dependent variable and model residuals.

Modeling Approach. MESF was then employed to correct
for the observed spatial autocorrelation. This technique is an
extension of a linear regression model that eliminates spatial
autocorrelation from the residuals using eigenvectors that are
derived from Moran’s I measures of a spatial weights matrix
(SWM). This results in residuals appearing independent and
uncorrelated (Griffith et al. 2019). Specifically, the MESF
model is defined as:

y = Xβ + Eγ + ε

where X is a matrix of explanatory variables and
β is a vector of its coefficients, E is a matrix of
selected eigenvectors and γ is a vector of its coefficients.
y is the response variable and ε is a vector of the
error term. Eigenvectors present a spectrum of possible
map patterns that may exist in a spatial arrangement of
observations (Thayn 2017). Eigenvectors can have a positive
or negative value, with large positive values indicating
greater positive autocorrelation between observations.
These describe global or local spatial patterns in the
study area (Murakami 2017) and resulting eigenvectors
are definitively orthogonal. A parsimonious subset of
eigenvectors was iteratively selected to be included as
covariates in a linear MESF model. This iterative selection
process was executed until the Moran’s I test no longer
rejected the null hypothesis (Tiefelsdorf and Griffith 2007).
In this process, eigenvectors with small absolute values are
excluded, as they capture little spatial structure in the data
and do not improve model fit (Dray et al. 2006).

Spatial Weights Matrices. Spatial weights matrices are
used to define spatial relationships between observations in
a study area, making it a crucial step in most analyses.
Different matrices produce different eigenvectors and have
been observed to produce varied results (Bauman et al.
2018; Dray et al. 2006). We explored three distinct graph-
based methods to represent the spatial structure, each aimed
at capturing local spatial effects in unique ways. These
included queen contiguity, k-nearest neighbor, and Gabriel
graph. In graph-based representations CBGs serve as nodes
and edges are created between neighboring nodes. Edges
of a node represent its first-order neighbors. The queen
contiguity matrix creates an edge between a CBG polygon
and other CBGs that share a common boundary or vertices.
It prioritizes CBGs that are directly adjacent, irrespective of
their size or shape (Anselin 2002; Getis 2009). In contrast,
the k-nearest neighbor graph considers a specified k-number
of closest CBG centroids based on Euclidean distances as
neighbors. This approach inherently accounts for both shape
and size, while ensuring an equal number of neighbors
across all nodes. In this study, we consider the four closest
CBGs (k=4) as neighbors for each node. The Gabriel graph
also factors in shape and size but goes a step further by
considering the relative location of other points in the study
area. It creates an edge between two points when no other
node falls within a circle that is constructed with the line

∗∗See Figure S1 in the supplementary material.
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segment that connects them as the diameter (Matula and
Sokal 1980). Thus, this approach is more restrictive than
other SWMs. We determine the optimal SWM by testing
these graph-based representations of spatial connectivity.††

Running the Models. Built on the above components,
we next constructed three distinct regression models for
each of our three cities. Each of these models used the
MESF approach with different SWMs. In addition, we
ran Spatial Lag and Spatial Error models for each city.
These are two commonly used techniques for correcting for
spatial autocorrelation and were included to evaluate the
effectiveness of MESF techniques. Finally, we employed a
linear model as our baseline for comparing the performance
of spatial and non-spatial regression models. Through
this combination of models, we were able to identify
the most suitable spatial model for investigating the
relationship between socio-demographics and e-scooter trips
while controlling for underlying spatial structure and built
environment factors.

Results
In this section we present the results of the various models,
assess their accuracy, and report on variations in the
significance values.

Model Performance
Eigenvectors that reduce the Moran’s I of model residuals are
selected and added as covariates in the SWM-based models.
The number of eigenvectors selected in each MESF model
and resulting metrics from the linear model are reported in
Table 2. The MESF models outperform the linear model in
all three cities, with a lower AIC and RMSE, and a higher R2

and Adjusted R2, indicating a considerable improvement in
model fit with the addition of the spatial eigenvectors.

We conducted a Moran’s I test on model residuals
and found no statistical significance across all networks,
suggesting that the MESF technique can effectively correct
for underlying spatial patterns in the data. Simulation studies
demonstrate that AIC is effective in identifying the most
appropriate SWM (Seya et al. 2013). In our study, MESF
with a Gabriel graph matrix outperforms other SWMs in
Washington DC and Portland, whereas MESF with a k-
nearest neighbor graph performs best in Atlanta (Table 2).
We use these matrices in our MESF models for further
analysis of all three cities.

Spatial Regression Models Compared. Various statistical
techniques exist to address the issue of spatial autocorre-
lation. Among these, Geographically Weighted Regression
(GWR), Spatial Lag, and Spatial Error are most widely
used (Anselin 2009). The GWR approach employs local
regression models to account for spatial autocorrelation
across the study area. However, issues with multicollinearity
have been reported with coefficients of the local regression
model, even when variables in the global model are not
correlated (Wheeler and Tiefelsdorf 2005). Since results
from such models are not suitable for our type of analysis,
we instead chose to focus on the Spatial Lag and Spatial
Error models. Like MESF, these methods are extensions of

standard linear regression models and utilize a SWM to con-
sider spatial patterns. In the Spatial Lag model, a lagged term
is introduced as an explanatory variable to capture spatial
effects, which is a weighted average of the values of the
dependent variable of neighboring observations. In contrast,
the Spatial Error model accounts for spatial autocorrelation
using a varying coefficient for the error term. In general, both
Spatial Lag and Spatial Error models are recognized as effec-
tive techniques to address spatial autocorrelation (Anselin
2009).

In order to evaluate the performance of the MESF
technique to other spatial regression techniques, we ran
a Spatial Lag and Spatial Error model using the same
parameters as the MESF models. The results indicate that
the MESF models outperform the Spatial Lag and Spatial
Error models based on various model performance metrics,
including AIC, RMSE, and R2. The AIC values of the MESF
model are lower than those of the Spatial Lag or Spatial Error
model across all three cities, indicating a better model fit.‡‡

Despite the addition of eigenvectors, the inclusion of these
parameters leads to an improvement in model fit without a
corresponding increase in model complexity. Our analysis
also indicates that the MESF model produces the lowest
RMSE scores across all three cities.

Findings. Coefficients for the MESF model and their
significance, for Washington DC, Portland, and Atlanta are
presented in Figure 1. Consistent with previous research,
our findings highlight the importance of built environment
factors on e-scooter trip usage. Specifically, we observe a
strong positive association between walkability and trips
across all three cities. We also observe a significant
association between trips and the number of workers, as well
as diversity in employment and household types. While these
variables are significant across all three cities, we observe
a positive association in Washington DC and Portland, and
a negative association in Atlanta – the city with the least
amount of data.

In Washington DC, e-scooter trips are positively
associated with CBGs with a higher proportion of males,
as well as population aged 18 to 39, with ages 25 to 29
exhibiting the strongest association. Additionally, trips are
positively associated with an income of less than $35,000
and negatively associated with a higher proportion of Black
population. In Portland, CBGs with a higher proportion of
the population aged 18 to 20 and 25 to 34 are positively
associated with e-scooter trips, with ages 25 to 29 exhibiting
the strongest association. Additionally, trips are positively
associated with both lower and higher income groups, with
a stronger association with income of less than $35,000
compared to income over $100,000. In Atlanta, higher
proportions of males and population aged 18 to 20, 25 to
34 and 40 to 44 are positively associated, with ages 18
to 20 exhibiting the strongest association. We also observe
a positive association between trips and income less than
$35,000 and a negative relationship with CBGs with income
between $35,000 to $60,000.

††See Figure S4 in the supplemental material.
‡‡See Figure S5 in the supplemental material
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Table 2. Linear model, MESF, Spatial Lag, and Spatial Error models compared.

Model R2 AIC Adj R2 RMSE EVs

Washington, DC

Linear Model 0.56 942 0.54 0.66 -
MESF + Contiguity Matrix 0.76 720 0.74 0.49 26
MESF + K-Nearest Neighbor (4) 0.78 697 0.75 0.47 34
MESF + Gabriel Graph 0.79 681 0.76 0.46 31
Spatial Lag + Gabriel Graph 0.71∗ 763 - 0.51 -
Spatial Error + Gabriel Graph 0.68∗ 801 - 0.52 -

Portland, OR

Linear Model 0.40 1061 0.38 0.77 -
MESF + Contiguity Matrix 0.69 856 0.64 0.56 41
MESF + K-Nearest Neighbor (4) 0.67 865 0.63 0.58 31
MESF + Gabriel Graph 0.68 851 0.64 0.56 34
Spatial Lag + Gabriel Graph 0.57∗ 920 - 0.63 -
Spatial Error + Gabriel Graph 0.55∗ 941 - 0.63 -

Atlanta, GA

Linear Model 0.39 766 0.36 0.78 -
MESF + Contiguity Matrix 0.79 518 0.74 0.46 40
MESF + K-Nearest Neighbor (4) 0.79 513 0.75 0.45 42
MESF + Gabriel Graph 0.79 523 0.74 0.46 41
Spatial Lag + K-Nearest Neighbor (4) 0.67∗ 577 - 0.54 -
Spatial Error + K-Nearest Neighbor (4) 0.66∗ 586 - 0.53 -

∗ indicates Nagelkerke pseudo-R2

One of the issues with using population characteristics
from regions in which trips originate, is that it assumes
that the characteristics of an e-scooter user reflects the
population characteristics of the CBG in which they start
the trip. In reality, we know this is not the case as many
trips originate from commercial regions, etc. To address
this issue, we next restricted our analysis to e-scooter trips
taken between 6 am and 9 am on weekdays. The assumption
here is that the origin of these trips are CBGs where users
reside and are likely the start of commuting trips. We use
the morning commute trip origins over destinations from
evening commute trips as the evening rush hour offers
greater flexibility for non-essential activities, such as grocery
shopping, recreation, socializing, or picking up children from
school (Ta et al. 2016). Coefficient estimates from the MESF
model for trips between 6 am and 9 am are presented in
Figure 2. In Washington DC, for commuting hours, the
association between trips and age remains consistent, with
a positive association between age groups ranging from
18 to 39 years and ages 25 to 29 exhibiting the strongest
association. Income over $100,000 is positively associated
while higher proportions of males are not. In Portland,
only age groups 18 to 20, and 21 to 29 remain positively
associated while ages 40 to 44 are negatively associated.
Income less than $35,000 and over $100,000 continue to
show a positive association. Additionally, walkability is not
a significant factor in understanding e-scooter commuting
trips in Portland. The model for Atlanta reveals that a
higher proportion of Black and Hispanic populations are
negatively associated with e-scooter commuting trips. Males
and age groups between 18 to 29 and 35 to 39 are positively
associated, however, ages 25 to 29 exhibit the strongest
association during morning commuting hours. We also
observe that employment household mix and workers are
not significant factors in understanding e-scooter morning
commute trip patterns.

Discussion
In this study, we evaluated the variability in e-scooter
usage and socio-demographic factors across three major U.S.
cities, namely Washington DC, Portland OR, and Atlanta
GA, while controlling for built environment factors and
spatial structure. We observe significant positive spatial
autocorrelation in the response variable (trip origins), and
the residuals of the linear model. In answering RQ2, we
employed a MESF approach which successfully addressed
the issue of spatial autocorrelation in the data. Our results
show that this technique corrects for spatial autocorrelation
in linear model residuals more effectively than other
commonly used techniques such as Spatial Lag and Spatial
Error (RQ3). We also explore three distinct spatial neighbor
definitions in all cities to measure and correct for spatial
patterns. These include a queen contiguity matrix, k-nearest
neighbors (k=4), and a Gabriel graph. We observe that the
selection of a spatial weights matrix can have a considerable
impact on model results.

In investigating the relationship between e-scooter trips
and our independent variables (RQ1), we observed that
walkability has a strong positive influence on trip activity
across all cities. This finding is consistent with previous
studies that show that e-scooters are often used as a faster
alternative to walking for short-distance trips (Sanders et al.
2022). However, we also observe that walkability is not
a significant predictor of e-scooter trips in Portland for
commuting trips taken between 6 am and 9 am. This suggests
that users that utilize e-scooters for commuting purposes in
Portland may reside outside the downtown core, in areas
that are typically less walkable. This also indicates that
e-scooters in Portland may be fulfilling the transportation
needs of a more diverse population group as compared to
Washington DC and Atlanta. Similarly, the model reveals
distinct relationships between e-scooters and the number
of workers and a mix of employment and household types
across cities. In Washington DC and Portland, which have
one central business district located in the downtown area, a
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Figure 1. Socio-demographic and built environment variable coefficient estimates for all trips across three cities. Statistical
significance, defined as p <= 0.05, is denoted by 1 for Washington DC, 2 for Portland, and 3 for Atlanta.

Figure 2. Socio-demographic and built environment variable coefficient estimates for trips taken between 6 am and 9 am on
weekdays. Statistical significance, defined as p <= 0.05, is denoted by 1 for Washington DC, 2 for Portland, and 3 for Atlanta.

higher number of workers and more diversity in employment
and household types are associated with more e-scooter
trips. In contrast, in Atlanta, where there are multiple central
business districts located throughout the city, we observe a
negative association between e-scooter trips and the number
of workers and higher employment and household mix.
Although this association is less pronounced in Atlanta
during the 6 am to 9 am commuting hours. Our models
indicate that e-scooters may not be a popular mode of
transport across all central business districts in Atlanta. This
is in contrast to Washington DC and Portland where most
commuting trips appear to be more concentrated in the
central business districts.

During morning commuting hours in Washington DC
and Portland, higher proportions of the population with an
income over $100,000 show a positive association with e-
scooter trips. This suggests that e-scooters may serve as a
convenient alternative for working professionals with higher

incomes, in commuting to work, particularly in the central
business district where there is higher e-scooter usage.
Additionally, we observe a positive association between e-
scooter trips and income less than $35,000 across all three
cities, with the strongest association observed in Portland.
This finding is in line with the results from Portland’s
2018 E-Scooter Pilot Program Survey, which reports that
roughly 23% of e-scooter users surveyed had an income of
less the $30,000 (PBOT 2018). In comparison, only 3% of
respondents had an income less than $30,000 in Atlanta,
despite this income group showing the highest support for
e-scooters (City of Atlanta 2019). This suggests that the
City of Atlanta’s efforts to deploy e-scooters in equitable
service areas may not be enough to promote accessibility
to e-scooters in this income group. In contrast, we observe
positive associations between e-scooter trips and both higher
and lower-income groups in Portland. Increased usage in
Portland can be linked to low-income pricing plan options
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required from operators as part of the permit application
to operate in the city (PBOT 2018). Specifically, higher
proportions of the population with an income over $100,000
show a positive association, and income less than $35,000
and between $35,000 to $60,000 show a positive association
during morning commuting hours. This indicates that e-
scooter services in Portland cater to the mobility needs of
all income groups, and particularly provide transportation
options for lower-income groups during commuting hours.

E-scooter services in Washington DC cater to a broader
range of age groups, with a positive association observed
between e-scooter trips and all age groups between 18 to
39 years. Although Portland and Atlanta serve similar age
groups between 18 to 29 and 35 to 39, the population aged
21 to 24 is not associated with e-scooter trips in either city.
In Atlanta, however, ages 21 to 24 are positively associated
during commuting hours. While further research is needed
to determine why this group is less likely to generate e-
scooter trips, it could be attributed to a lack of disposable
income or a preference for other modes of transportation.
In addition, ages 40 to 44 exhibit positive association in
Atlanta, which is consistent with findings from user surveys
that show that 58% of users between 36 and 45 years old
had previously utilized e-scooter services (City of Atlanta
2019). Higher usage by this age group may be attributed
to the availability of bike infrastructure in areas where e-
scooters are available in Atlanta. However, in Portland, the
same age group is negatively associated with e-scooter trips
during commuting hours, suggesting a preference for other
modes of transportation such as personal cars amongst this
age group.

There are similarities in e-scooter usage patterns in
Washington DC and Atlanta. We observe a weaker
association between e-scooter trips and income less than
$35,000 in both cities, as well as a negative association with
income between $35,000 to $60,000 in Atlanta. Additionally,
we observe a negative association between e-scooter trips
and higher proportions of Black populations during all hours
of the day in Washington DC, and during commuting hours
in Atlanta. Similarly, we find a negative association between
e-scooter trips and higher proportions of Hispanics in Atlanta
across all trips. These results suggest a need for promoting
more equitable access to e-scooter services in these cities.
Similar initiatives such as the mandatory low-income pricing
options in Portland can be implemented to address this issue
and increase accessibility to e-scooter services, while also
prioritizing the deployment of e-scooters in these areas.
Furthermore, a positive association is seen between e-scooter
usage and a higher proportion of males in both cities.
Previous research shows that males are more likely to use
e-scooters as they are less concerned about safety issues
associated with using these services (Nikiforiadis et al.
2021). However, the significant gender gap in e-scooter
usage in Washington DC and Atlanta highlights the need
for safer transportation infrastructure that encourages more
women to utilize these services.

The success of e-scooters as a viable mode of
transportation in the larger urban transportation ecosystem
relies heavily on their ability to fulfill a diverse range of
transportation needs. Despite their potential, there are several
challenges users currently face in utilizing these services,

including limited access to vehicles, lack of affordability,
and inadequate infrastructure. E-scooter services have a
similar core age group across Washington DC, Portland,
and Atlanta, primarily consisting of younger to middle-
aged users. However, there are differences in usage patterns,
with both the highest and lowest income groups exhibiting
higher activity as compared to middle-income groups across
all cities. Furthermore, we find disparities in trip activity
in predominantly Black and Hispanic neighborhoods of
Washington DC and Atlanta, as well as higher usage by
males. Addressing these issues will require city governments
to implement more budget-friendly payment options, in
addition to their current initiatives such as deploying vehicles
in underserved areas. Investment in safer infrastructure such
as dedicated bike lanes for e-scooters may help increase
ridership by females, and thereby promote more equitable
access to e-scooters.

There are some limitations to our study. We combine data
from different time periods in Washington DC, specifically
June-July 2019 and 2021. Despite data being sourced from
the same months of the year, changes in e-scooter demand
and usage patterns pre and post Covid-19 may impact model
results. We also compute SWMs using Euclidean distances
instead of navigable road networks – which would more
accurately reflect geographic connectivity between CBGs.
Since e-scooter data does not include user information,
we are unable to determine if a user resides in the
CBG where they begin a trip. To address this limitation,
we assume that the user resides in the CBG where the
trip originates. Although this allows us to analyze the
relationship between e-scooter usage patterns and socio-
demographics, we acknowledge that this may not accurately
reflect the socio-demographics of e-scooter users. This issue
was partially addressed by running a separate analysis on
trips taken during morning commute times and comparing
the results to our all trips models.

Conclusion
Our study provides insight into current e-scooter usage
patterns in three major U.S. cities, revealing who uses these
services and who remains underserved. We demonstrate that
the Moran’s Eigenvector Spatial Filtering approach is an
effective method for correcting for spatial autocorrelation
in linear model residuals, leading to a better model fit
compared to other spatial correction techniques commonly
used. We are able to draw meaningful conclusions about the
relationship between e-scooter usage and socio-demographic
factors including age, income, gender, and race by
examining different spatial weights matrices of neighbors
for each city. We highlight similarities and differences in
these socio-demographic factors across cities and identify
gaps in accessibility to e-scooter services amongst socio-
demographic groups. These findings may aid in informing
how cities can adopt effective strategies and best practices to
make evidence-based planning decisions regarding e-scooter
operations. Cities can promote ridership among underserved
income and race groups by improving access to e-scooters,
implementing more budget-friendly options for access, and
developing safer infrastructure. It is critical for e-scooter
operators and city governments to work together to make e-
scooter a more reliable form of urban transportation for all
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socio-demographic groups. Increased usage of e-scooters in
urban areas can expand transportation access while offering
a more sustainable alternative for urban mobility.
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Brown MJ, Scott DM and Páez A (2022) A spatial modeling
approach to estimating bike share traffic volume from gps data.
Sustainable Cities and Society 76: 103401.

Caspi O, Smart MJ and Noland RB (2020) Spatial associations of
dockless shared e-scooter usage. Transportation Research Part
D: Transport and Environment 86: 102396.

City of Atlanta (2019) Atlanta e-scooter survey 2019 results.
Publisher: Atlanta Georgia.

Denver Public Works (2019) Denver dockless mobility program:
Pilot interim report.

Dray S, Legendre P and Peres-Neto PR (2006) Spatial modelling:
a comprehensive framework for principal coordinate analysis
of neighbour matrices (pcnm). Ecological modelling 196(3-4):
483–493.

Getis A (2009) Spatial weights matrices. Geographical Analysis
41(4): 404–410.

Gong L, Liu X, Wu L and Liu Y (2016) Inferring trip purposes
and uncovering travel patterns from taxi trajectory data.
Cartography and Geographic Information Science 43(2): 103–
114.
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