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Abstract. Geographic entities and the information associated with
them play a major role in Web-scale knowledge graphs such as Linked
Data. Interestingly, almost all major datasets represent places and even
entire regions as point coordinates. There are two key reasons for this.
First, complex geometries are difficult to store and query using the cur-
rent Linked Data technology stack to a degree where many queries take
minutes to return or will simply time out. Secondly, the absence of
complex geometries confirms a common suspicion among GIScientists,
namely that for many everyday queries place-based relational knowledge
is more relevant than raw geometries alone. To give an illustrative exam-
ple, the statement that the White House is in Washington DC is more im-
portant for gaining an understating of the city than the exact geometries
of both entities. This does not imply that complex geometries are unim-
portant but that (topological) relations should also be extracted from
them. As Egenhofer and Mark put it in their landmark paper on naive
geography, topology matters, metric refines. In this work we demonstrate
how to compute and utilize strict, approximate, and metrically-refined
topological relations between several geographic feature types in DBpe-
dia and compare our results to approaches that compute result sets for
topological queries on-the-fly.

Keywords: Linked Data, Topology, Geospatial Semantics,
GeoSPARQL, Ontology

1 Motivation and Research Contribution

Places and the information associated with them are among the most interlinked
types of entities on the global Linked Data cloud (Heath and Bizer, 2011). Within
such Web-scale, cross-domain knowledge graphs, places act as pivotal vertices
connecting events, people, and objects. Repositories that contain large collec-
tions of geographic identifiers are among the most central and densely interlinked
hubs on the Linked Data cloud. For instance, named places are the second most
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frequent entities within DBpedia and collectively contribute millions of proper-
ties to the dataset, including some of the most common property types such as
birthplaces of historic figures and administrative subdivision names.

Nonetheless, the vast majority of geographic identifiers are represented in the
simplest of all possible spatial representations, namely point coordinates. While
such representation is appropriate for many everyday information retrieval tasks,
e.g., finding nearby restaurants, it is not suitable for the plethora of operations
performed by scientists, government agencies, and industry professionals using
geographic information systems and spatial analysis more broadly. To some ex-
tent, these demands could be met by simply providing the more complex ge-
ometries, e.g., polylines and polygons, for places in raw form as Linked Data.
However, such approaches overlook the key underlying issues. (1) Querying high-
resolution geometries, e.g., the areal extent of a river, by using on-demand spatial
extensions to triplestores, such as GeoSPARQL, does not scale well over large
datasets. (2) Real world applications for complex geometries and semantically
empowered queries requires preprocessing steps, e.g., to handle so-called sliver
polygons, that are not currently supported by any Linked Data based framework.
(3) The ultimate purpose of spatial analysis is often concerned with topological
information, e.g., whether a river runs through a city, thereby turning geome-
tries into a “means to an end” for acquiring the topological relation between
entities. (4) Finally, the proper geometric representation of real-world entities
varies by place type, scale, and task, often leading to unintended consequences
when operating on raw, precomputed geometries alone. For instance, represent-
ing a state park as a point-feature may be sufficient to get a general sense of
its location, but the representation does not support queries for adjacent wa-
ter bodies. An unintended consequence may be that the centroid of the park is
in one county but the extent of the park actually spans two or more counties
leading to improper topological results.

With the advent of GeoSPARQL (Perry and Herring, 2012) and other means
to perform spatio(temporal) queries (Koubarakis and Kyzirakos, 2010) over
Linked Data, complex geometries are becoming more popular across several
datasets. The LinkedGeoData project (Stadler et al., 2012), for example, pro-
vides different geometry types, such as polygons, extracted from OpenStreetMap.
These geometries can be utilized for two types of queries, those that involve or
infer topological relations and those that are non-topological such as distances,
buffers, patterns, and convex hulls.

Based on the presented argumentation, we conjecture that replacing the sim-
ple geometries that dominate knowledge graphs and search engines today with
more complex geometries will be of limited use for many everyday applications.
Instead, we believe that knowledge graphs and Linked Data more concretely will
benefit further from topological relations. One could now argue that such topo-
logical relations can be computed using geometries but not the other way around.
While this is true in an abstract mathematical sense, it does not hold for actual
data. In fact, topological relations between places cannot be easily computed
based on geometry alone. While there are many reasons for this (Franklin, 1984;
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Ubeda and Egenhofer, 1997), our argument will focus on the role of domain
knowledge, vagueness, and uncertainty (Bennett, 2001) and not on computa-
tional issues. The fact that simple point geometries are sufficient for the most
frequent Point Of Interest (POI) queries has been sufficiently demonstrated by
major search and map engines, POI repositories, and place-based social net-
works, Wikipedia, and so on. Therefore, we will only consider places that are
of sufficient spatial extent to result in substantial inaccuracies when modeled as
point features alone. Examples include rivers, roads, counties, parks, and so on.

To understand how topology is handled in GIS, it is important to note that
data collection, modeling, and preprocessing take about 80% of the entire time
budget of a typical GIS project. When data are loaded into a GIS, the analyst
uses a sequence of toolboxes to first correct common errors such as so-called
sliver polygons and then applies domain-specific topological consistency rules.1

Neither the preprocessing steps nor the domain-specific topology rules are avail-
able when computing topological relations on-demand using GeoSPARQL over
Linked Data. Also, the datasets used for any given GIS task that involve topo-
logical relations are orders of magnitude smaller than querying such relations
over Linked Data hubs such as DBpedia. Hence, queries such as finding cities
along the Mississippi River or counties that run along state borders cannot be
effectively answered over Linked Data today.

Consider the following illustrative example. Lynchburg, Tennessee is a con-
solidated city-county whose boundaries coincide with Moore County. Using Re-
gion Connection Calculus 8 (RCC8) (Cohn et al., 1997), the true topological
relation between the city and county should be equal however computing the
relation using GeoSPARQL returns partially overlaps; see Fig. 1. The reason
is due in large part to digitization errors, i.e., the double-digitized boundaries
problem While differences in granularity are common sources of errors, difficul-
ties arising from uncertainty and vagueness are even more troublesome. Whereas
uncertainty stems from lack of precise knowledge, vagueness is caused by intrinsi-
cally under-determined concepts that do not have clear borders (Bennett, 2001).
For example, the true shape of a city can be determined in theory although
measurement accuracy, timeliness (the city may grow or shrink), administrative
definitions, and so forth, impact the results. In contrast, the shape of a mountain
or forest cannot be exactly determined in practice nor theory as the transition
zones between a mountain and a valley, as well as a forest and isolated trees, are
conceptually vague.

Problem statement: Following Egenhofer and Mark’s slogan that topol-
ogy matters, metric refines (Egenhofer and Mark, 1995b), knowledge graphs
will benefit from explicit topological relations in addition to (complex) geome-
tries and other place-specific properties. Computing such relations, e.g., using
GeoSPARQL, based on geometry alone is not currently possible in the context
of Linked Data.

1See, for example, the following overview of geodatabase topology rules provided
by ArcGIS http://resources.arcgis.com/en/help/main/10.2/01mm/pdf/topology_

rules_poster.pdf.

http://resources.arcgis.com/en/help/main/10.2/01mm/pdf/topology_rules_poster.pdf
http://resources.arcgis.com/en/help/main/10.2/01mm/pdf/topology_rules_poster.pdf
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Fig. 1 Lynchburg, Tennessee is a consolidated city-county whose boundaries coincide
with Moore County. The expected topological RCC8 relation should be equal (EQ),
however computing the relation solely given the geometries will return partial overlap
(PO).

To address this problem, we propose to combine techniques from GIS and
the Semantic Web then demonstrate how to derive strict, approximate, and
metrically-refined topological relations, how to use background knowledge in the
form of RDF triples that, while strictly speaking are not topological, can be used
to infer topological relations, how to define an ontology to distinguish between
geographic feature types that have broad boundaries versus those that do not,
and finally, how to integrate the aforementioned methods into a multi-layered
topological relations framework to enrich DBpedia.

In terms of a bigger picture, this work is about exploring one of three major
trade-offs to bring the full Digital Line Graph data from the USGS National
Map to the Linked Data cloud. The first trade-off is the decision about which
relations to compute on-the-fly and which to materialize (Regalia et al., 2016).
For instance, dependent properties such as population densities should be com-
puted if the population count and area are already stored as triples. Similarly,
while DBpedia stores select cardinal direction triples, storing all of them would
lead to a combinatorial explosion. The work presented here takes a comple-
mentary perspective by looking at relations that cannot be easily computed
on-the-fly, and, thus, should be precomputed and materialized instead. We will
show that queries which include topological relations often cannot be effectively
answered using GeoSPARQL. The third tradeoff is about balancing client-side
versus server-side queries (Regalia, 2017).

The research contributions of this work are as follows:

– To demonstrate the feasibility of the proposed methods, we present a linked
dataset of topological relations derived from the geometries of cities, coun-
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ties, parks, streams, and roadways for the contiguous United States. We
selected these feature types since they cover both strict boundaries (e.g.,
administrative boundaries) and broad boundaries (e.g., streams) as well as
the pairwise relations between regions-to-regions, regions-to-polylines and
polylines-to-polylines.

– In addition to the strict topological relations based on a subset of RCC8,
we also include approximate topological relations (Clementini and Di Felice,
1997), and additional topological relations with metric refinements (Egen-
hofer and Dube, 2009). To the best of our knowledge, these extended topo-
logical relations have never before been used in the context of Semantic Web
research and are neither part of any linked dataset nor ontology.

– We demonstrate how to derive these relations by applying methods known
from geographic information systems to features matched between DBpedia
and OpenStreetMap. We show how Semantic Web technology can be lever-
aged to discover latent properties within a heterogeneous geographic dataset
by applying topological reasoning. One example would be the creation of a
coastal city class, defined as a city that has the (broadly) touches rela-
tion to a feature of the class ocean. We will discuss a more complex example
about the topological relation of parks and county borders.

– We present example queries based on the resulting dataset and compare
them to using GeoSPARQL for qualitative spatial reasoning.

– Finally, we show how our work can help in detecting and clearing erroneous
place type definitions in DBpedia based on implausible topological relations.

In this work, we discuss the primary challenges to computing and representing
topological relations solely from geometries, demonstrate how to use ontologies
and multi-layered topological relations to overcome these challenges, and produce
a preprocessed and cleaned dataset of topologically linked places derived from
DBpedia and OpenStreetMap.

The remainder of the paper is structured as follows. In Section 2, we describe
the process of preparing data collected from DBpedia and OpenStreetMap in
order to compute topological relations. In Section 3, we describe how we compute
the relations, including for crisp boundaries, broad/approximate boundaries, and
metrically-refined topological relations. In Section 4, we provide an overview of
the resulting dataset, show a comparison to computing topological relations using
GeoSPARQL, and demonstrate the utility of our dataset by example. Finally,
we conclude the paper and point to directions for future work.

2 Data Preparation

In this section, we discuss the procedure for constructing a spatially-enabled
database in preparation for computing topological relations. The database com-
bines and resolves RDF resources from DBpedia with spatial elements2 from
OpenStreetMap.

2From OSM’s conceptual data model terminology: https://wiki.openstreetmap.
org/wiki/Elements

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
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2.1 Data Integration

The goal of this work is to enrich DBpedia with topological relations by produc-
ing a dataset of RDF triples. Since DBpedia places are only represented as point
coordinates, our first task is to match as many places from DBpedia with their
corresponding polygon or polyline geometries in OpenStreetMap. This type of
coreference resolution task presents a number of challenges, most notably those
discussed by Sehgal et al. (2006) and Ngomo (2012). Existing approaches in-
clude the use of string similarity measures (Michalowski et al., 2004) and spatial
signatures (Zhu et al., 2016), to name a few. In this paper however, we focus on
topological methods and the accuracy of resulting topological relations.

Therefore, we rely on existing meta-level links between the two datasets, i.e.,
matching normalized Wikipedia and Wikidata URIs through (a) “owl:sameAs”
and “foaf:isPrimaryTopicOf” objects from DBpedia triples and (b) “wikidata”
and “wikipedia”/“wikipedia:en” tag values from OSM elements in order of prece-
dence. We show an example for Yosemite National Park in Listings 1.1 and 1.2.
Approximately 90k OSM elements in North America have such links to DBpedia.

It is important to note that compared to OpenStreetMap which strives for
comprehensive geographic coverage, DBpedia exhibits a sparser coverage yet
contains a greater depth of information per feature. This is a natural conse-
quence of the fact that Wikipedia, DBpedia’s data source, is primarily driven by
community members writing articles about topics of societal significance such as
cities, national parks, important historic landmarks, and so on. Consequently,
coverage is not a primary concern since our goal is to produce an RDF dataset
for the Linked Open Data cloud of which DBpedia is the central hub. It’s also
worth mentioning that the relatively sparser coverage does not jeopardize our
ability to compute topology since we are only interested in materializing rela-
tions between existing resources when they available. In other words, we envision
our approach as being able to adapt to varying degrees of data availability.

1 # http://dbpedia.org/resource/Yosemite_National_Park
2 dbr:Yosemite_National_Park owl:sameAs wikidata:Q180402 ;
3 foaf:isPrimaryTopicOf wikipedia-en:Yosemite_National_Park .

Listing 1.1 An example of the meta-level links that exist for Yosemite National Park
in an RDF document from DBpedia http://dbpedia.org/data/Yosemite_National_

Park.ttl

1 <!-- https://www.openstreetmap.org/relation/1643367 -->
2 <osm>
3 <relation id="1643367">
4 <tag k="wikidata" v="Q180402"/>
5 <tag k="wikipedia" v="en:Yosemite National Park"/>
6 <!-- polygon geometry and other tag nodes... -->
7 </relation>
8 </osm>

Listing 1.2 An example of the meta-level links that exist for Yosemite National Park
a relation element from OpenStreetMap. In this case, the feature has both links so the
Wikidata entity id “Q180402” is used for resolution and the Wikipedia URI is used to
validate the resolution.

http://dbpedia.org/data/Yosemite_National_Park.ttl
http://dbpedia.org/data/Yosemite_National_Park.ttl
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In order to store the geometries and compute topological relations be-
tween all pairs of geographic features, we use the PostGIS spatial extension
to PostgreSQL. We use Overpass3 to query for all ways and relations that have
a wikidata, wikipedia or wikipedia:en tag. These features are loaded into a
spatially-indexed PostgreSQL table with their id, Wikipedia URL suffix, and
geometry.

2.2 Entity Selection

In order to derive meaningful strict, approximate, and metrically-refined topo-
logical relations requires tuning place-type-specific parameters. For example, the
exact buffer radius to use in order to derive a polygon’s broad boundary should
differ when comparing two cities versus comparing two national parks for the ap-
proximately adjacent relation, even assuming all polygons are of similar size. In
other words, broad boundaries cannot depend on geometry alone. Therefore, we
focus our efforts on a subset of features by selecting those of specific place types.
We select cities, counties, and parks, which are represented by multipolygon ge-
ometries, as well as roadways and streams, which are represented by polyline
geometries.

A final collection of places within the contiguous United States have the
following essential properties: A DBpedia resource URI, an OpenStreetMap el-
ement URI, some geometry ((multi)polygon or polyline), and a place type tag
such as city, county, park, roadway, or stream. A composite overview of these
are shown in Figure 2.

2.3 Cleaning Digitization Errors

As a first step in deriving topological relations from the noisy geometries we col-
lect from OpenStreetMap, we define a set of metrics that measure various char-
acteristics of the interaction between two geometries. These metrics are initially
defined from a top-down perspective and supported through manual inspection
of the data. A custom map-enabled interface is used for inspection, providing a
broad overview of possible threshold values for identifying and labeling proper
topological relations.

Digitization errors are handled through manual exploration of the data in
order to identify a conservative threshold that will coerce relations arising from
poor geometric alignment into their correct relation. For example, intuitively one
might expect that the City of Santa Barbara would be completely contained by
Santa Barbara County. In a strictly topological sense, however, the two regions
in OpenStreetMap partially overlap, as shown in Figure 3. The area of their dif-
ference though is only 11.3m2, clearly the result of digitization error. In order to
help identify such cases, we construct a range of metrics for each relation during
the initial computation of strict topological relations. Relations that result in
high values for these measure are intended to signify an increased likelihood of

3Overpass Query API: https://wiki.openstreetmap.org/wiki/Overpass_API

https://wiki.openstreetmap.org/wiki/Overpass_API
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Fig. 2 A map showing a composite overview of all places, categorized by place type,
that were matched between DBpedia and OpenStreetMap which we use to compute
topological relations. Notice that the ‘Cities’ symbol uses a drop-shadow effect to reveal
the density of small polygon features at this macro-scale.

a digitization error. We designed a visual interface to inspect these measures
case-by-case, one at a time, alongside a map view of the geometries (Figure 1).

Egenhofer and Dube (2009) define a set of nine splitting measures for polygon-
overlaps-polygon relations in order to support metrically refined topology. Here,
we apply their Inner Area Splitting (IAS) measure by computing the area of

intersection divided by the area of the smaller polygon, i.e., Area(L∩S)
Area(S) . This

metric enables us to identify an appropriate threshold to separate cases that
should actually be labeled as tangential proper part from those that are indeed
overlapping. This same metric is also used to correct relations erroneously iden-
tified as partial overlaps to the more suitable externally connected (EC). In our
analysis, we also measured Inner Traversal Splitting (ITS) and Outer Traversal
Splitting (OTS) yet found IAS to be the strongest measure for separating region
overlap cases on this dataset.

For all strictly disjoint cases, we focus only on those relations that are clearly
digitization errors. Adhering to the conceptual neighborhood graph, we can only
obtain EC relations from those that start strictly as disjoint (DC). Using our cus-
tom map-enabled dataset interface, we manually inspected all DC region-region
pairs sorted by separation distance in ascending order until reaching cases that
were no longer unquestionably disjoint. We then settled on using the conserva-
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Fig. 3 A render of the geometries for the city of Santa Barbara (red) strictly overlapping
Santa Barbara County (blue). The inset zoom bubble shows the 11m2 difference of the
two geometries.

tive distance threshold value of 20 meters or less between polygon geometries to
clean digitization errors by coercing them to the EC relation. In other words,
we manually labelled all 375 cases of DC region-region pairs that were corrected
to EC. Furthermore, pairs of geometries that are of a distance greater than or
equal to 20 meters apart are later used as candidates for the nearly meets broad
boundary relations. We plan to add more measures such as Expansion Closeness
from Egenhofer and Dube (2009), in future work.

3 Computing Topological Relations

In this section we provide details about the selected strict, approximate, and
metrically-refined topological relations and their computation.

We start by computing an index of all spatially disjoint features to avoid
redundant calculations since every pairwise combination between features must
be considered for each topological relation. For instance, to discover that a city
and a nearby river are broadly touching, we first need to compute that they
are strictly disjoint, yet close enough that their boundaries might overlap. We
then proceed by checking topological relations on the remaining pairwise com-
binations. In fact, we continue this pattern of propagating result sets from each
computed topological relation onto the next task in the series to substantially
reduce the overall processing time. We provide an example of this technique for
the polygon-to-polygon relations procedure in Listing 1.3.
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1 # 'cps' stands for 'compute_pairwise_self'
2 non_interacting := cps_non_interacting(all)
3 disjoint := non_interacting + cps_disjoint(all - non_interacting)
4 interacting := all - disjoint
5 touches := cps_touches(interacting)
6 intersecting := interacting - touches
7 overlaps := cps_overlaps(intersecting)
8 within := cps_within(intersecting - overlaps)
9 tangential_proper_part := cps_tpp(within)

10 non_tangential_proper_part := within - tangential_proper_part

Listing 1.3 Psuedocode summarizing the procedure for computing the polygon-to-
polygon topological relations in series by reusing and subtracting results sets from
previous computations, an application of the conceptual neighborhood graph. Notice
in this Listing, we use “+” to represent the union of two sets and “-” to represent the
relative complement.

3.1 Strict Topological Relations

As opposed to relations between features with broad boundaries, i.e., approxi-
mate relations, we use the term strict to refer to relations about polygons with
crisp boundaries and polylines.

Egenhofer and Franzosa (1991) initially defined a framework for the descrip-
tion of topological spatial relations based on the intersections of boundaries
and interiors between two sets in IR2. Clementini et al. (1993) extended the 9-
Intersection Model (Egenhofer et al., 1993) for topological interactions between
spatial regions with the Dimensionally Extended 9-Intersection Model (DE-9IM).
Cohn et al. (1997) provide a family of first-order logical calculi known as Region
Connection Calculus which treats spatial regions as primitives in order to sup-
port reasoning about spatial entities with connections. Most notably, RCC8 is a
set of eight relations that are jointly exhaustive and pairwise disjointed.

In RCC8, TPPi and NTPPi are inverse relations of TPP and NTPP, re-
spectively. Consequently, the inverse relations are reserved to be inferenced by
the RDF reasoner during query execution. In fact, we omit materializing any
triples that would be handled by basic reasoning on inverse properties and tran-
sitive properties. We also do not materialize disjoint relations as this is not only
infeasible from a storage perspective but also unnecessary for operating under
the Open World Assumption (OWA). Because Linked Data operates under the
OWA, dataset publishers may choose to exclude any sets of relations without
introducing inconsistencies among their enriched dataset. In total, for region-
region relations, we compute equals (EQ), externally connected (EC), partially
overlapping (PO), tangential proper part (TPP) and non-tangential proper part
(NTPP).

For strict topological relations between line-region, we compute touches
(TCH), passes through (PTH), and includes (INC) (Egenhofer and Mark, 1995a;
Formica et al., 2012).
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3.2 Approximate Topological Relations

Conceptually there is a disconnect between what is clearly a strict relation and an
approximate relation. Approximate topological relations (Clementini and Di Fe-
lice, 1997) are used to describe broad boundaries (Du et al., 2008) between
spatial features. For example, a river may border a city on one side, but topo-
logically the river does not coincide with the border in all sections; rather it
approximately follows part of the city boundary before continuing on. In such
cases, one can argue there is a topological relationship between the two features
as the concrete geometric representations of features and their accuracy depend
on time, scale, measurement conventions, and so forth. This is particularly the
case when both fiat and bona fide boundaries are involved (Smith and Mark,
1998). However, what exactly constitutes a broad boundary compared to two
features simply being nearby requires further exploration.

To determine the radius by which to buffer a polygon’s boundary, the 0.05
percentile of the cumulative distribution function of ordered minimum distances
between pairs is used as the maximum broad boundary measure. We then mul-
tiply this by the isoperimetric quotient shown in Equation 1 to account for the
observation that features which have very specific (fiat or bona fide) boundaries
can be thought of as having a lesser degree of uncertainty as compared to those
features that have simple shapes/boundaries.

IQ =
4πA

p2
(1)

Finally, the geometric boundaries for each feature pair in our set of dis-
joint relations are buffered using the above approach. Those feature pairs whose
buffered boundaries intersect get assigned an approximate topological relation.
For approximate topological relations, we compute nearly contains (nCt) and
nearly equals (nE) for region-region relations, and nearly meets (nM) for both
polyline-region and region-region relations.

3.3 Metrically-Refined Topological Relations

Here we briefly explain the concept of metrically-refined topological relations
and then provide an explanation our four relations: mostly within (mW), barely
touches (bT), connects (CON), runs along (RAL), and runs alongside (RAS).

Metrically-refined topology opens the door to a wide range of potential rela-
tions that distinguish more detail about relations between spatial entities than
purely qualitative topological ones (Egenhofer and Dube, 2009). This includes
predicates that may be conceptually vague and difficult to represent especially
as a binary relation. Therefore, we attempt to capture the semantics of concepts
that are obvious to human perception, such as a highway running along the
ocean, even if they are occasionally inconsistent from a strictly topological point
of view (Egenhofer and Mark, 1995b) .

To start off with a straightforward demonstration of metrically-refined topol-
ogy, we refine the EC relation for region-region by defining barely touches (bT)
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as when the length of the boundary connection is less than 10m. Although this
threshold is not data-driven, we emphasize that the primary goal of metrically-
refined topological relations is to provide some meaningful distinction to users,
oftentimes allowing domain experts to transparently impose a top-down perspec-
tive on the refined relations.

Next, we refine the PO relation for region-region by defining mostly within
(mW) as when the area of the intersection is greater than or equal to 80% of
the smaller polygon’s area. This metric is based on the Inner Area Splitting
(IAS), one of the nine splitting measures for region-overlaps-region relations
from Egenhofer and Dube (2009).

For relations involving polylines, we measure the area of intersection between
the buffered regions of the two features. IfXD is the minimum bounding diameter
of polyline X in meters, we define the buffer radii XR as ln(XD). The buffered
polygon XB is then used to calculate a polyline’s interactions with other buffered
features for the RAL and RAS relations. In Equation 2, we define the inequality
for T , the threshold value for which the runs along RAL relation holds between
two polylines X and Y . The runs alongisde relation applies a similar metric to
line-region DC relations by using the buffered boundary and buffer radius of
each feature.

Area(XB ∩ YB)

(min(XD, YD))2
≥ T (2)

For the CON relation, we select cases that approximately match the 16-
intersection matrix code strings 0*0**0*10*11*111 (e) and 0*1**0*20*02*111

(h) for polyline-polyline relations from Formica et al. (2018), with a relaxation
of E = 10m as the maximum endpoint ‘snapping’ distance for which a poly-
line’s endpoint is allowed to move in order to intersect the other polyline. This
threshold value was selected following the same process described in Section 2.3.

4 Application and Evaluation

In total, we produce 120, 681 distinct RDF statements covering various topo-
logical relations among features of the selected place types within the contigu-
ous United States. We provide a breakdown of these relations for polygons-to-
polygons in Table 2, polylines-to-polygons in Table 3, and polylines-to-polylines
Table 4. Next, we demonstrate how to use this dataset to correct place-type
classification errors in DBpedia, validate existing adjacency relations in DBpe-
dia, and perform topological queries over Linked Data. We also compare the
performance of our materialized relations to querying them on-the-fly using
GeoSPARQL.

4.1 DBpedia Error Correction

We compute topological relations between all combinations of features, regard-
less of their place type. However, certain place type combinations should exclude
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some topological relations by virtue of their ontological axiomatization. For ex-
ample, two administrative regions of the same class cannot overlap by definition,
so no county should ever be contained by another county. Our experiment yields
cases that would appear to violate such rules, including the 10 combined county-
county proper part relations, the 239 combined city-city proper-part relations,
and the 48 city-city partial overlaps relations; see tables 2-4. Manual inspection
of these cases reveals that the features involved with these relations are in fact
misclassified by DBpedia. Namely, the 10 county-county relations involve places
that are actually cities, and the 287 city-city relations mostly involve places that
are not cities but actually a variety of place types including cemeteries, airports,
buildings, and so on. Many of these DBpedia resources also include rdf:type

relations to their proper classes but DBpedia does not prevent the aforemen-
tioned class violations, e.g., by performing validation on the TBox statement
that Airport and City are disjoint classes. Defining such disjointness axioms,
however, for all place types combinations a-priori is not feasible due to many
cases that can arise in reality such as cities spanning two counties. The same is
true for constraints in the form of SHACL shapes.

It is worth noting that additional complications can arise from the fact that
NTTP and EC can be easily confused both in terms of geometric errors and
conceptually. For instance, one could naively assume that the village of Birm-
ingham, Missouri is inside (NTTP) of Kansas City, Missouri while, in fact, it
is entirely surrounded by it (EC). In contrast, a city is really contained by a
county and not externally connected to it. Put differently, the area of Kansas
City is determined by its polygon’s area minus the holes represented by inner
rings, while a city inside a county does not form such an inner ring. In everyday
language, however, we typically do not make such distinctions.

4.2 Validating DBpedia’s Adjacency and Partonomy Relations

While DBpedia itself does not aim at providing any robust topological rela-
tions between places, there do exist avenues for structured and semi-structured
data from Wikipedia to make their way into topologically significant relations
in DBpedia. For example, the primary cardinal direction relations, dbp:north,
dbp:east, dbp:south and, so on, are generated via natural language processing
on Wikipedia article abstracts, as well as from a special “Adjacent Communi-
ties” wiki template4. Ostensibly, these cardinal direction relations in DBpedia
encode some meaningful topological relation, namely adjacency, between places.
However, as one might suspect, relations are sometimes made to well-known
places that are not remotely adjacent simply because they serve as a geographic
reference or are in some way significant to the history or function of a place.
For instance, Flint, MI has a southwest relation to Chicago, IL even though the
two cities are more than 350km apart. Nonetheless, triples that make use of
such cardinal direction relations offer an opportunity to deploy our materialized
topological dataset for comparison.

4https://en.wikipedia.org/wiki/Template:Adjacent_communities

https://en.wikipedia.org/wiki/Template:Adjacent_communities
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In fact, for each of the 82, 973 distinct combinations between places that
interact topologically according to our dataset, we query DBpedia for all rela-
tions that exist between each pair then rank the set of involved predicates by
the number of times they appear in a triple. As we can see in Figure 4, cardinal
direction relations make up nearly half of all relations, followed by nearly a third
belonging to the dbo:isPartOf predicate. This allows us to assess which cardi-
nal directions in DBpedia coincide with topological relations and which do not.
As we have demonstrated in previous work (Regalia et al., 2016), approximately
33% of the cardinal direction relations in DBpedia are defective and many other
require additional information about the involved uncertainties to become re-
producible. We compare all EC, TPP, and NTPP triples and find a majority of
statements from DBpedia to be potentially accurate, see Figure 5. Based on the
results shown above, such cases should be replaced with topological relations
instead, particularity if they have been extracted from Wikipedia’s adjacency
template.

Fig. 4 Relative frequencies of the most common predicates that relate two places to
each other on DBpedia, excluding dbo:wikiPageWikiLink, for all features that exhibit
any topological interaction within our dataset. Collectively, cardinal direction relations
constitute nearly 50% of all such triples.

4.3 Relation to GeoSPARQL Queries

A key utility of our resulting dataset is to support topological queries over Linked
Data. Given that users can already perform topological queries over Linked Data
using GeoSPARQL, in this subsection, we demonstrate the shortcomings of com-
puting topology on-the-fly, i.e., in response to queries, illustrate the limitations
of using purely crisp boundary topology, and show why the Web of Linked Data
needs cleaned geometry data and precomputed topology encoded with domain
knowledge, e.g., for applying the correct relations.

Consider, for example, a query for how many other counties does each county
share a border with? ; shown in Listings 1.4 and 1.5. Using GeoSPARQL, we are
able to obtain 3, 074 results in 176 seconds, compared to our approach which
yields 3, 080 results in about 9 seconds. Both queries run on the same cold,
i.e., uncached, triplestore. The difference in performance is expected since the
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Fig. 5 Stacked bar chart showing how many place pair relations are (a) unverifiable
based on their absence from our materialized dataset, which suggests potentially inac-
curate topological triples on DBpedia, (b) verifiable based on their presence in both
datasets with the stipulation that the topological relation(s) observed in our dataset
does not align with the topological relation inferred from DBpedia, (c) accurate based
on their presence in both datasets and the condition that the topological relations
align, which supports the topological accuracy of such triples on DBpedia, and (d)
supplemental based on their absence from DBpedia, which demonstrates the volume
of our contribution towards enhancing the LOD cloud. Cardinal direction relations are
represented by the adjacency label and dbo:isPartOf by partonomy.

GeoSPARQL approach must compute topology on-the-fly whereas ours is al-
ready materialized.5

However, this bordering counties example was carefully chosen in order to be
able to compare our approach against GeoSPARQL since most other interesting
use cases are simply unfeasible for a GeoSPARQL triplestore to handle on-the-
fly, i.e., they either timeout or run out of memory, due to the computational
cost for each topological relation combined with the large number of pairwise
combinations between geometric features in such a dataset. To illustrate, the
city-touches-city relation we (pre)computed for our dataset took over 12 hours
to running on 56 2.1 GHz cores in parallel, while other relations, such as road-
nearlyMeets-road, took more than 35 hours, combining topological and metric
queries in PostGIS.

On the other hand, there are also discrepancies between the two result
sets. Out of the 3, 074 counties that both result sets have in common, our ap-
proach finds between 1 and 4 additional bordering counties in 42 cases where
GeoSPARQL does not register EC relations due to sliver polygons. Even more
compelling, our approach returns 6 results that do not appear at all in the
GeoSPARQL result set due to the fact that their geometries do not exhibit per-
fectly precise common boundaries with adjacent features. For instance, due to
sliver polygons that are imperceptible to the human eye, GeoSPARQL finds 0
bordering counties for Houston County, Georgia, and, thus, it is not included in
the result set, whereas our approach yields all 8 bordering counties; see Figure 6.
Furthermore, our dataset also materializes a supplementary barely touches rela-
tion to one of Houston County’s bordering counties, Crawford County, Georgia,

5Hence, this experiment should not be confused for a runtime performance evalua-
tion but is supposed to demonstrate the feasibility (or lack thereof) of computing with
complex geometries on-the-fly.
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in order to metrically refine the EC relation. In total, GeoSPARQL failed to
capture 78 EC relations between counties.

Finally, querying the broader Web of Linked Data for topological relations
by computing them on-the-fly will, at some point, inevitably involve geome-
tries combined from heterogeneous datasets, e.g., by using federated querying or
Linked Data aggregators such as the LOD Laundromat6. However, this approach
to computing topology is fraught with limitations and potential errors due to
dirty geometries, e.g., the fact that no two sources will digitize the exact same
boundaries, and misaligned ontological concepts due to different understandings
or modeling decisions about place types.

1 # Using GeoSPARQL
2 select ?countyA ?borderingCounties {
3 select ?countyA (count(?countyB) as ?borderingCounties) {
4 ?countyA a experiment:County ; geosparql:hasGeometry ?geomA .
5 ?countyB a experiment:County ; geosparql:hasGeometry ?geomB .
6 filter(geof:sfTouches(?geomA, ?geomB))
7 } group by ?countyA
8 } order by desc(?borderingCounties)

Listing 1.4 Query for all bordering counties using GeoSPARQL’s extensible value
testing function geof:sfTouches, which computes the EC topological relation on-the-
fly.

1 # Using our precomputed topological dataset
2 select ?countyA ?borderingCounties where {
3 select ?countyA (count(?countyB) as ?borderingCounties) {
4 ?countyA a experiment:County . ?countyB a experiment:County .
5 { ?countyA agt:touches ?countyB }
6 union { ?countyB agt:touches ?countyA }
7 } group by ?countyA
8 } order by desc(?borderingCounties)

Listing 1.5 Query for all bordering counties using our agt:touches predicate, which
represents the EC topological relation that was materialized by precomputing topology
for all features.

4.4 Topological Queries over Linked Data

There is another benefit to precomputing and materializing topological relations
for use in Web-scale knowledge graphs that is less obvious than performance
trade-offs and scalability. The fact that topological relations are materialized as
object properties in RDF allows users to define custom axioms, such as class as-
sertions, in order to perform topological and subclass reasoning on a geographic
dataset. In this section, we provide an example, created to reflect a potential sce-
nario from our dataset, that illustrates the capabilities of topological reasoning
as it applies to Linked Data.

In this example, we wish to create a class that identifies parks which would
require a traveler to entirely cross through the interior of one or more counties in
order to reach the park’s region from a starting location on the containing state’s

6http://lodlaundromat.org/

http://lodlaundromat.org/
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Fig. 6 Houston County, Georgia shares a border with 8 counties, none of which are
captured by GeoSPARQL’s geof:sfTouches topological operator function due to tiny
sliver polygons. Our approach also materializes the agt:barelyTouches relation to
Crawford County, Georgia.

boundary. Conceptually, we assume that the traveler cannot traverse along the
zero-width, one-dimensional edges of county boundaries and must therefore be
within exactly one county at any given location. We define the axioms in Equa-
tion 3, starting with the assertion that counties cannot overlap with, nor be
within, other counties. From the jointly exhaustive and pairwise disjoint set of
relations from RCC8, this implies that counties must either be DC or EC to
other counties. We then apply a similar assertion to US states, followed by the
axiom for non-tangential counties (NTC), which defines counties that are NTPP
to a state. Finally, we define our target class, ParksInNTC which identifies parks
that either only have PO relations to NTCs or are a NTPP of an NTC.

County u (∃ PO.County t ∃ NTPP.County t ∃ TPP.County) v ⊥
State u (∃ PO.State t ∃ NTPP.State t ∃ TPP.State) v ⊥

NTC ≡ County u ∃ NTPP.State

ParksInNTC ≡ Park u (∀ PO.NTC t ∃ NTPP.NTC)

(3)

Another practical use for Semantic Web technology on topological relations
can be to support question answering systems, which typically involve concep-
tually vague relations to begin with, such as nearby. In this example scenario,
we translate the question are there important figures who were born in one city
along the Mississippi River and died in a different city along the Mississippi
River, and if so, who are they and which cities where involved? into a query.
Here, we attempt to model the relation along with a metrically-refined topo-
logical relation, runs alongside (RAS), defined in Section 3.3, in an effort to
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implement a naive geographic model which Egenhofer and Mark (1995b) pro-
pose as the first stage in a feedback loop that ideally aligns formal models with
intuitive human perception. The SPARQL query is shown in Listing 1.6, while
the result is illustrated graphically in Figure 7.

1 select ?person ?placeBorn ?placeDied where {
2 ?placeBorn a :City . ?placeDied a :City .
3

4 dbr:Mississippi_River ?interactsA ?placeBorn .
5 values ?interactsA { agt:touches agt:crosses agt:nearlyMeets }
6

7 dbr:Mississippi_River ?interactsB ?placeDied .
8 values ?interactsB { agt:touches agt:crosses agt:nearlyMeets }
9

10 filter(?placeBorn != ?placeDied)
11

12 service <http://dbpedia.org/sparql/> {
13 ?person a dbo:Person ;
14 dbo:birthPlace ?placeBorn ;
15 dbo:deathPlace ?placeDied .
16 }
17 }

Listing 1.6 SPARQL query for persons who were born in a city along the Mississippi
River and died in a different city along the Mississippi River using a Federated Query
to combine our topological dataset with DBpedia’s knowledge graph.

Fig. 7 A map of the trajectories of persons who were born in a city along the Mississippi
River and died in a different city along the river.

5 Conclusions and Further Work

Publishing massive geographic datasets with complex geometries as Linked Data
requires balancing several trade-offs. One family of trade-offs is concerned with
the question of which properties to compute on-the-fly, i.e., during query time,
and which to store in pre-computed form. In this work, we argued why topo-
logical relations (and queries involving them) often cannot be computed during
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query time, despite being supported in theory by GeoSPARQL. Additionally,
GeoSPARQL and related approaches only support a subset of relationships rel-
evant for everyday queries. Following Egenhofer and Mark’s slogan that topol-
ogy matters, metric refines, we compute polygon-polygon, polygon-polyline, and
polyline-polyline topological relations for several feature types such as cities,
parks, and roadways in DBpedia. As DBpedia does not contain complex geome-
tries but merely points, we derive the geometries from aligning DBpedia entities
with OpenStreetMap. On top of strict topological relations, here RCC8, we also
compute approximate and metrically-refined relations. Interestingly, both ap-
proximate and metrically-refined relations have not been studied in the geospa-
tial semantics literature before and no ontologies or datasets have been published.
We present a variety of interesting findings such as how to detect classification
errors in DBpedia and how to validate existing adjacency rations. Finally, we
give examples for queries enabled by our approach and compare their runtime
and results with GeoSPARQL. From a big picture perspective, our work con-
tributes to finding the right balance between cases where complex geometries
should be made available as Linked Data and cases where providing point data
enriched by topological relations computed based on these complex geometries is
sufficient. We provide the source code to our custom computational framework
at https://github.com/blake-regalia/awesemantic-geo, along with a live
SPARQL endpoint of the materialized dataset which can be queried using a web
interfae at http://yasgui.org/short/Lp1v0cYL4.

Future work will focus on computing topological relations for the full USGS
Digital Line Graph dataset and publishing them as Linked Data. We also hope
to integrate the current dataset with DBpedia. We also aim at developing a full
ontology for strict, approximate, and metrically-refined relations, an addition
to the subset presented in the current work. Finally, as it is difficult to find
a context-independent definition for the range of broad boundaries and even
more so for metrically-refined topological relations, we plan to introduce a sec-
ond provenance graph, e.g., using PROV-O with additional axioms that model
uncertainty, that enables users of topologically linked data to understand the
individual design decisions that went into creating the data.

https://github.com/blake-regalia/awesemantic-geo
http://yasgui.org/short/Lp1v0cYL4
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Code Types Description

L Refers to (Multi)Polyline geometry types.

G Refers to (Multi)Polygon geometry types.

E Refers to either of the two aforementioned geometry types.

Crisp Boundary Relations for G/G pairs – RCC8 (Cohn
et al., 1997)

DC G/G Disconnected

EC G/G Externally Connected

PO G/G Partially Overlaps

EQ G/G Equals

TPP/i G/G Tangential Proper Part ∪ Tangential Proper Part Inverse

NTPP/i G/G Non-Tangential Proper Part ∪ Non-Tangential Proper Part Inverse

Crisp Boundary Relations for L/G pairs – as used by
Formica et al. (2012).

TCH L/E Touches

PTH L/G Passes Through

INC E/L Inclusion

Crisp Boundary Relations for L/L pairs Formica et al.
(2018).

CRS L/L Crosses

TCS L/L Touch Crosses ⊂ TCH

Broad Boundary Relations – as defined by Clementini and
Di Felice (2001).

nM E/G Nearly Meets ⊂ DC

nCt G/G Nearly Contains ⊂ PO

nE G/G Nearly Equals ⊂ (PO ∪ TPP/i ∪ NTTP/i)

Metrically-Refined Topological Relations

mW G/G Mostly Within ⊂ PO : the area of intersection is greater than or equal
to 80% of P1’s area.

bT G/G Barely Touches ⊂ EC : the spheroidal length of the intersecting
boundary is less than 10m.

RAL
RAS

L/E Runs Along (L/L), Runs Alongside (L/G): the area of intersection
between the features’ broad boundary buffers is greater than some
threshold value as described in Section 3.2.

CON L/L Connects ⊂ TCH : at least one of the points where the polylines in-
tersect is colocated with one of the points that either polyline starts
or ends.

Table 1 Topological operator codes as defined by related works as well as our custom
metrically-refined operator codes. P1 refers to the polygon with lesser area and P2 the
polygon with greater area.
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avg. area of...

region-region EQ EC PO TPP/i NTPP/i nE nM nCt mW bT smaller polygon larger polygon

park-park 1 220 9 10 49 0 84 0 3 4 477km2 3, 952km2

park-city 0 283 160 79 740 0 120 14 47 291 22km2 617km2

park-county 0 516 512 135 1, 645 0 15 1 74 439 411km2 4, 971km2

city-city 0 11, 827 48 58 189 0 386 0 20 27 65km2 170km2

city-county 1 6, 768 1, 046 3, 397 12, 496 0 84 5 280 880 40km2 2, 694km2

county-county 0 9, 117 0 1 9 0 25 0 0 0 2, 048km2 3, 302km2

Table 2 Number of region-to-region relations materialized for each place type combi-
nation by row, and each topological relation by column using codes defined in Table
1.

avg. length/area of...

polyline-region PTH TCH INC nM bT RAS polyline polygon

road-park 137 984 155 13, 928 10 11 316km 1, 169km2

road-city 3, 072 17, 302 3, 303 19, 528 106 100 425km 137km2

road-county 7, 041 5, 597 3, 751 4, 579 213 9 383km 2, 739km2

stream-park 156 220 123 1, 303 3 5 293km 4, 180km2

stream-city 708 2, 516 285 2, 973 106 382 408km 258km2

stream-county 1, 502 1, 491 1, 718 828 118 241 418km 4, 221km2

Table 3 Number of polyline-to-region relations materialized for each place type com-
bination by row, and each topological relation by column using codes defined in Table
1.

avg. length of...

polyline-polyline CRS TCS CON nM RAL shorter polyline longer polyline

road-road 9, 861 2 658 100, 790 65 20km 127km

road-stream 4, 109 0 84 7, 922 94 79km 556km

stream-stream 12 0 237 4, 573 2 5km 24km

Table 4 Number of polyline-to-polyline relations materialized for each place type
combination by row, and each topological relation by column using codes defined in
Table 1.
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