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Abstract. Urban vitality captures the dynamic and inter-
active nature of city environments by highlighting how
residents engage with public spaces, making it essential
for differentiating neighborhoods. Traditional indicators
focused on static measures, such as density, land-use di-
versity, and built environment design. Most of these mea-
sures fail to capture the dynamic nature of vitality. This
paper introduces the concept of Mobility Vitality, a novel
measure that captures the dynamic and vibrant nature of
human activities through the analysis of active and micro-
mobility modes, including biking, e-scootering, and recre-
ational running. Taking Washington, D.C. as a case study,
we analyze the spatiotemporal patterns of mobility across
different modes and time periods, revealing significant
variations in mobility patterns between the downtown core
and peripheral areas. The results also indicate that the
most unique time series of the three micro-mobility modes
are weekend mornings and weekday nights, and fluctu-
ations are more pronounced within a day than between
weekdays and weekends. The proposed analysis frame-
work may guide infrastructure investments, optimize ur-
ban transport networks, and advance more equitable and
sustainable cities.
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BoK Concepts. Spatial Simulation Modeling, Open Sci-
ence, and Geospatial Citizenship.

Keywords. Mobility Vitality, Urban Vitality, Micro-
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1 Introduction

Urban Vitality refers to the dynamic and vivid quality of
the urban environment, reflecting the use and experience
of spaces by residents (Jacobs, 1961). This is an impor-
tant measure that could be used to distinguish neighbor-
hoods, evaluate policy impacts, guide urban planning, en-

able proper development, and create social, economic, and
cultural exchanges.

A key aspect of urban vitality is the movement of people,
especially through active and micro-mobility modes like
running, biking, and e-scooters. These sustainable trans-
port options operate at a human scale, promoting direct in-
teractions with the city and enhancing community bonds.
Research has shown that such modes increase physical ac-
tivity (Lai et al., 2022), reduce carbon emissions (Nocerino
et al., 2016), and support healthy lifestyles (Nieuwen-
huijsen, 2020), thereby contributing to urban vitality and
community cohesion.

Urban vitality already encompasses various indicators that
reflect the liveliness and functionality of city spaces. We
propose Mobility Vitality (MV), a dynamic aspect of urban
vitality, evaluating how different modes of transportation
use the roads over time. It examines whether a road con-
sistently supports diverse transportation modes or is pre-
dominantly used by a single mode. A road with high mo-
bility vitality not only experiences a high volume of trips
but also exhibits a high mixture of transportation modes.
This diversity in mobility patterns enhances accessibility,
promotes sustainable transportation, and contributes to the
overall dynamism of urban life.

Unlike traditional static indicators like density or land
use diversity (Montgomery, 1995), in this study, we take
shared micro-mobility and active modes as examples to
reflect fluid movement patterns, varying by time and loca-
tion. This approach provides urban planners with deeper
insights into how various transportation modes are used
in combination, enabling more effective urban planning
decisions. It highlights inequities in transport access and
makes sure mobility options are equitably distributed.

Herein, we contribute mainly to a methodological exten-
sion with the MV measure. In developing the measure,
we use a sample of data that involves running, cycling,
and e-scootering. This is not to say that these are the only
forms of mobility that can be used to measure MV—in
fact, we encourage researchers, planners, and policymak-
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ers to develop and assess their city’s own MV through the
use of their own data sources. The purpose of this work is
to present the preliminary framework of MV and demon-
strate its use with our own example set of mobility data.

With these objectives in mind, we will address the follow-
ing three research questions (RQ) in this work:

RQ1 Do different modes of local mobility exhibit different
spatial and temporal patterns across a city?
We address this question by examining trip volume at
the scale of road segments, time resolution of a typi-
cal week, and across four modes of mobility. Through
this analysis we reveal where and when the common-
alities and differences in mobility mode usage occur,
providing insights into the spatial and temporal dy-
namics of urban mobility. Although it’s a relatively
simple question, it is important to set this baseline
before continuing.

RQ2 How do the four mobility modes differ in their spa-
tiotemporal variability, and within each mode, which
time series stands out as most unique? How do these
variations compare across different time scales?
We actually ask four subquestions in this part:
Among the four active and micro-mobility modes,
which mode exhibits the highest degree of spatiotem-
poral variability? Additionally, within each mode,
which time series demonstrates the most unique spa-
tiotemporal mobility pattern? Do spatial and tempo-
ral differences manifest more across various time se-
ries within a single day or when comparing the same
time series on weekdays versus weekends? To ad-
dress this, we introduce the Spatio-Temporal Align-
ments (STA) (Janati et al., 2019) method, which
aligns two time series to quantify differences in both
spatial distributions and temporal sequences.

RQ3 How can we combine different spatial and tempo-
ral mobility signatures to produce a Mobility Vitality
measure that can be used to identify and compare dif-
ferent regions in a city?
To address this question, we propose an approach
for developing a combined MV measure. We will
demonstrate how such a measure can be utilized by
urban and transportation planners to compare differ-
ent regions within a city.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work on urban vitality and mobility
analytics. Section 3 describes the datasets and preprocess-
ing steps. Section 4 introduces our methodological frame-
work, providing a detailed explanation of how each of the
three research questions is addressed. Section 5 presents
the results of our analyses. Finally, Section 6 discusses the
broader implications, limitations, and future research di-
rections, followed by concluding remarks in Section 7.

2 Related Work

Vitality, also referred to as vibrancy, represents an es-
sential urban quality arising from a diversity of activi-
ties (Lynch, 1984), and is largely reflected in its abil-
ity to attract commercial and pedestrian activities (Gehl,
1987; Wu et al., 2018). In recent decades, the availabil-
ity of large-scale built environment data, such as Open-
StreetMap (OSM) (Haklay, 2010), land use mix (Lu et al.,
2017), detailed information on buildings and blocks (Sung
and Lee, 2015), and points of interest (POIs) (Zeng et al.,
2018), heralded a new era of quantitative analysis using
big data in urban vitality research (Liu et al., 2015). How-
ever, these datasets are relatively static and still cannot re-
flect real-time changes in urban vitality.

In recent years, more and more scholars have begun to use
all kinds of spatiotemporal data in mapping urban vital-
ity. Examples include night lighting remote sensing data
(Zhang et al., 2021; Xia et al., 2020), mobile phone sig-
naling data (Wu and Niu, 2019; Li et al., 2020), social me-
dia check-ins (Li et al., 2022b; Yue and Zhu, 2019), Baidu
heat maps (Dong et al., 2022), and small catering business
data (Ye et al., 2018). As data collection and analysis ad-
vanced, scholars began integrating diverse sources to cre-
ate multidimensional urban vitality frameworks (Liu and
Shi, 2022) and compare vitality across cities (Yue et al.,
2021).

However, using origin-destination (OD) or trajectory data
as a proxy for urban vitality is still uncommon. Most stud-
ies that rely on single-dimension measures do not cap-
ture mobility vitality. For example, researchers have used
metro trips (Sulis et al., 2018), bike-sharing flows (Zeng
et al., 2020), car-hailing activities (Zhang et al., 2020), and
taxi flows (Chen et al., 2022; Zhang et al., 2022) to assess
urban vitality.

Recent studies have combined mobility data with other
sources to create multidimensional urban vitality mea-
sures. For example, Kang et al. (2021) used POIs, taxis,
and mobile data; Li et al. (2022a) combined taxis, bike-
sharing, and reviews; Yang et al. (2023) merged Baidu
OD trips and Dianping reviews to differentiate tangible
and intangible vitality; Qiang and McKenzie (2023) com-
pared metro, taxi, and bike; Tu et al. (2022) utilized metro
cards and social media in three different cities. More im-
portantly, an increasing number of researchers are focus-
ing their attention on active mobility. Qiu et al. (2024) es-
timates exercisality on urban trails based on three types
of trajectories: walking, running, and cycling. Zhu et al.
(2024) matches walking and running trajectories with the
six visual indicators from street view and then analyzes
the gender and age differences in these two exercise pref-
erences.

Although the last two studies incorporate various active
mobility modes, Qiu et al. (2024) only examines a limited
number of running trails, whereas Zhu et al. (2024) fo-
cuses on exploring the running preferences of different de-



mographic groups rather than assessing the vitality that ac-
tive mobility represents. Furthermore, except for work by
Yang et al. (2023), all other analysis units are either neigh-
borhood, block, or grid level, which lack spatial granular-
ity and do not align with the inherent characteristics of the
movement, as it happens on the streets. Last, previous ef-
forts to utilize diverse mobility data for depicting urban vi-
tality have proven insufficient. Therefore, conducting mul-
tidimensional MV analyses at the street level that include
active mobility remains an under-explored area and is ur-
gently needed.

3 Data

To demonstrate our MV approach, we conduct an example
study in Washington, District of Columbia (D.C.), using
data from four mobility platforms. We obtained Capital
Bikeshare (CB) trip data, including OD and timestamps,
from the city’s public portal1. Additionally, we accessed
Lime’s dockless e-bikes and e-scooters data, referred to
as Lime Bike (LB) and Lime Scooter (LS), via their pub-
lic API2. For the year 2023, we analyzed 1,329,016 LB
trips, 2,703,025 LS trips, and 4,467,334 CB trips. Recre-
ational running trajectories were sourced from Strava3 be-
tween 2011 and 2022, focusing on the top 10 segments4

in D.C., resulting in 10,109 runs with GPS trajectory data,
timestamps, and duration. Here, we utilized Strava data to
analyze running trajectories in Washington, D.C., over a
span of ten years rather than concentrating solely on the
year 2023. This approach was necessitated by the compar-
atively smaller size of the Strava dataset when compared to
shared micro-mobility datasets. We believe that aggregat-
ing data across a decade does not compromise the valid-
ity of our analysis, as prior research indicates that human
mobility patterns exhibit a high degree of spatiotemporal
consistency (Gonzalez et al., 2008).

Before analysis, trips were restricted to durations between
two minutes and 24 hours. For CB, LB, and LS data,
we calculated the shortest path on D.C.’s roadway net-
work5 using trip origins and destinations6, then derived
trip speeds. Trips exceeding the maximum speeds for
bikes and scooters, as well as Lime vehicle recharging
trips, were excluded (McKenzie, 2019). Strava data were
cleaned by removing invalid trajectories (e.g., unrealistic
speeds, large GPS gaps, and durations over 6 hours) and
limiting them to one trajectory per athlete to reduce bias.

1https://s3.amazonaws.com/capitalbikeshare-data/index.html
2https://ddot.dc.gov/page/dockless-api
3https://developers.strava.com/docs/reference/
4Parts of a road or trail over which athletes compete for fastest

travel time.
5https://opendata.dc.gov/datasets/DCGIS::roadway-block/

about
6Using the Python packages ’networkx’ and

’scipy.spatial.KDTree’.

After cleaning, shortest path trajectories were used to ag-
gregate trip counts per road segment across the four mo-
bility modes for eight time-day periods: four five-hour pe-
riods each for weekdays (WD) and weekends (WE) (6
am–10 am, 11 am–3 pm, 4 pm–8 pm, and 9 pm–1 am).
The 2 am–5 am period was excluded due to low cycling
and running activity, as shown in Fig. 1.

4 Methodology

Here, we analyze our urban mobility patterns at the road
segment level across our four mobility modes and eight
time periods. First, we examine road similarity across the
city using trip volume as a measure. Next, we examine
similarities in mobility patterns over both space and time
employing the STA methodology. We then combine these
insights to develop our mobility vitality measure that high-
lights differences and similarities across city road seg-
ments. Finally, a method for visualizing the spatiotemporal
variability of mobility vitality is presented.

4.1 Trip Volume and Road Similarity

To address RQ1, we used cosine similarity to measure how
different mobility modes exhibit spatial and temporal pat-
terns. Each road segment’s trip volume across eight time
periods was normalized and compared. For each mobility
mode, the cosine similarity between road segments deter-
mines their uniqueness. We then combined trip volumes
across all modes into a 32-period array (4 modes × 8 time
periods) to assess overall mobility patterns. Roads with
high volume but low similarity were identified as popu-
lar and unique, while roads with high volume and high
similarity were identified as common but less distinctive.

4.2 Spatio-Temporal Alignments

To address RQ2, we employ the STA method (Janati et al.,
2019) to quantify differences between spatiotemporal se-
ries by simultaneously aligning their spatial distributions
and temporal sequences. This approach enables nuanced
comparisons of urban mobility patterns, effectively cap-
turing complex variations across multiple transportation
modes and diverse time periods.

The spatial component of our analysis is based on the dis-
tribution of trip counts across the city. Our analysis seg-
ments the city into a 50×50 grid. This was necessary as
STA requires grid data, similar to an image, with horizon-
tal and vertical alignment. Additionally, running the anal-
ysis directly on thousands of road segments would have
been computationally prohibitive. Thus, a 50×50 grid size
was chosen after testing a variety of grids ranging from
5×5 to 100×100. The dissimilarity measure converged at
50×50, indicating that this grid size provided sufficient
spatial resolution.

https://s3.amazonaws.com/capitalbikeshare-data/index.html
https://ddot.dc.gov/page/dockless-api
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(a) Lime Scooter (b) Lime Bike

(c) Capital Bikeshare (d) Strava Running

Figure 1. Bar charts for hourly trip counts aggregated to weekends and weekdays for four mobility modes. Hours are grouped into four
periods per day (WE1-4 and WD1-4).

We should also clarify the time series data structure in
STA. As discussed earlier, the concept of a ‘time period’
refers to a 5-hour span during which all trips are aggre-
gated. In contrast, a series consists of five individual 1-
hour timestamps. For each timestamp, trip counts are nor-
malized by dividing the trips in each grid cell by the total
trips across the city for that hour.

Then, the STA method combines the Wasserstein distance
for spatial dissimilarity and dynamic time warping (DTW)
for temporal alignment. For two spatial distributions x and
y, the Wasserstein distance (Kantorovich, 1960) is:

W (x,y) = min
P

∑
i,j

PijMij (1)

where P is the transport plan, and Mij is the cost matrix
based on geographic distance. Entropy regularization (Cu-
turi, 2013) is used to minimize the cost.

DTW aligns two time series by minimizing alignment
cost, allowing for temporal shifts. STA uses DTW with
the Wasserstein distance, with the STA cost defined as:

STA(X,Y) = min
A

∑
(x,y)∈A

W (x,y) (2)

where X and Y are two time series and A is a feasible
alignment of the two time series. In our case, each time
series has 5 timestamps, so A is a path from (1,1) to (5,5).
Each step of the path aligns one timestamp from series X
and another from series Y, with spatial distributions x and
y, respectively. The STA cost is the sum of the Wasserstein
distance between x and y at each step, minimized over all
possible alignments A.

The STA matrix can be used to analyze many aspects of
the spatialtemporal patterns. The uniqueness of each time
series is quantified by the sum of its corresponding row,
while the overall average variability for a mobility mode
is captured by summing all matrix elements.

4.3 A Measure of Mobility Vitality

To address RQ3, we need a classification method to com-
bine the various similarity properties that we have identi-
fied across the different mobility modes, time periods, and
road segments.

For each time period, we divided the trip volume for each
mobility mode into low volume (represented by ‘L’) and
high volume (represented by ‘H’) based on its median trip
volume. Hence, four modes in total, two classes for each,
resulting in 24 possible combinations for the road seg-
ments. For example, ‘LLLH’ means one road has low LS,
low LB, low CB, and high ST for a specific period. The
ranking and spatial distribution of these categories fluctu-
ate every second in real-time, representing the active and
micro-mobility vitality of the city. And four periods were
chosen to exhibit the representative MV result according to
the highest and lowest similarity periods resulting from the
STA analysis. Additionally, we compared the categories
across these four time periods for each road to determine
if the road segment retained the same category or varied
in its categories across the four periods. This allows MV
users to better understand the habits of cyclists and run-
ners using the same road at different times of the week.
Furthermore, this allows us to identify if a road is consis-
tent in how cyclists, scooter-riders, or runners use it.

4.4 Data and Software Availability

The CB dataset is published as open data and can be down-
loaded from https://capitalbikeshare.com/system-data. As
a result, the whole CB analysis is reproducible. Due to the
terms of use and for privacy preservation, we are unable
to share the raw trip data from Lime or Strava. Instead, we
have provided the identifiers and scripts that can be used
to ‘re-hydrate’ the trips.

Historical data for Strava is accessible, so we include a list
of activity IDs for the runs. Yet, due to the API rate limit of
300 requests per hour, retrieving the approximately 10,000
activities used in our study would require a significant time

https://capitalbikeshare.com/system-data


investment. For the Lime data, trips are collected in real-
time from the Lime API, but historical data cannot be ob-
tained retrospectively if collection did not begin in 2023.
Therefore, to reproduce a similar analysis for LS/LB, a re-
searcher would need to run our script at regular intervals
(e.g., every 15 seconds) over several months to a year and
then reconstruct the trips following the documentation out-
lined in the GitHub link below.

All analysis scripts for STA, as well as the code used to
generate the results and figures presented in this paper, are
included in the GitHub repository at https://github.com/
ptal-io/Mobility_Vitality.

5 Results

In this section, we present the results of our analyses,
highlighting key insights into the spatiotemporal patterns
of mobility vitality in Washington, D.C. First, we exam-
ine the overall trip volumes and identify distinctive road
segment usage across multiple mobility modes. Then, we
delve into detailed spatiotemporal alignments using the
STA method, uncovering the most unique temporal se-
ries and mobility modes. Finally, we synthesize these find-
ings into our proposed Mobility Vitality measure, visualiz-
ing the combined spatial distributions and highlighting the
heterogeneity among different mobility modes to provide
actionable insights for urban planners and policymakers.

5.1 Trip Volume and Road Similarity

Fig. 2 presents the analysis of trip volume and road seg-
ment similarity, showing that high-volume and unique pat-
terns are dispersed around the U.S. Capitol, Lincoln Park,
and H Street Corridor, rather than the National Mall (light
pink regions to the right side of the National Mall shown
in Fig. 2b).

Fig. 4 shows the four individual mobility modes, combin-
ing trip volume and cosine similarity to categorize road
segments. Red roads represent unique temporal patterns,
while blue roads show common, highly frequented routes,
as defined in Section 4.1.

LS, LB, and CB have the highest trip volumes in down-
town D.C., extending along primary roads (Fig. 4a -
Fig. 4c), with patterns resembling the overall distribution
in Fig. 2a. ST data (Fig. 4d) differs, with running activ-
ity concentrated along park paths, river, and mountain like
Sixteenth Street Heights, National Arboretum, and Mount
Pleasant.

Road similarity in Fig. 4a - Fig. 4c shows variation: areas
like Massachusetts Ave NW exhibit high similarity, while
places such as the National Mall, West Potomac Park, and
Capitol Hill show low similarity. ST shows a similar pat-
tern (Fig. 4d), but unlike the other three modes, contrasts
between similarity and volume are scattered throughout
both the inner and outer parts of D.C.

In addressing RQ1, we find substantial spatial and tempo-
ral differences between mobility modes. LS and LB ex-
hibit similar patterns, while recreational running shows
distinct spatial and temporal behavior across D.C. Above
all, docked bikeshare is mostly concentrated in Down-
town, while dockless systems offer a broader distribu-
tion, particularly extending further into the northern part
of D.C.

5.2 Spatio-Temporal Alignments

The STA analysis shows that ST exhibits the greatest spa-
tiotemporal variability, while LB shows the least. Fig. 5
presents the STA matrices for each mobility mode across
eight time periods. WE4 and WD4 of ST were too sparse
for reliable results and were excluded. Each matrix vi-
sualizes how usage patterns differ between periods, with
higher values indicating greater discrepancies and lower
values indicating more stable usage. The sums in the last
column identify the most and least distinctive periods.
Among the three shared mobility modes, the most distinc-
tive time series are WE1 (weekend mornings) and WD4
(weekday nights), whereas running exhibits its highest
uniqueness during WE3 (weekend afternoons).

For LS, LB, and CB, WE2, WE3, and WD3 show the least
variability. ST, however, exhibits the highest variability
during WE3. Like the others, ST also shows high variabil-
ity during WE1 and low during WE2. Overall, WE1 is dis-
tinctive for all four modes, and WE2 is the least. Among
the four modes, ST shows the highest variability, followed
by CB, with LS and LB tied for the lowest.

To compare variability at different time scales, we av-
eraged STA distances across three comparisons: within
weekdays, within weekends, and between matching time
periods on weekdays and weekends. As shown in Fig-
ure 5, we average the six pairwise distances among WE1,
WE2, WE3, and WE4 (red cells) and similarly for week-
ends (green cells) to capture within-day variability, while
the four distances between corresponding time periods (or-
ange cells) capture cross-day variability. Table 1 shows
that for the three micromobility modes, variability is
highest within weekdays, followed by weekends, with
the smallest differences observed between weekdays and
weekends. In contrast, running exhibits the highest vari-
ability on weekends, then between weekdays and week-
ends, and the lowest variability within weekdays.

Different time
within WE

Different time
within WD

Same time between
WE and WD

LS 2.5 3.1 0.8
LB 2.2 2.9 0.9
CB 3.9 4.6 1.6
ST 12.3 5.9 6.6

Table 1. Average of STA values across different time scales
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(a) Total trip count for all mobility modes (b) Cosine similarity sum for all mobility modes

Figure 2. Trip volume and cosine similarity analysis with all mobility modes combined together shown for each road segment in
Washington, D.C.

Figure 3. Reference map of Washington, D.C. showing neighborhoods discussed in the results



(a) Lime Scooters (b) Lime Bike

(c) Capital Bikeshare (d) Strava Running

Figure 4. The combination of trip volume and similarity for each mobility mode. These illustrate the differences or coherence between
trip volume and road similarity for different regions of Washington, D.C.



(a) Lime Scooter (b) Lime Bike

(c) Capital Bikeshare (d) Strava Running

Figure 5. STA distance matrices showing the results of the spatio-temporal alignment analysis. Higher values indicate greater differ-
ences in the mobility patterns. The last column of each figure shows the sum of the STA results for each time period row. The values
enclosed by red (green) grid lines compare different time series within weekdays (weekends) and those enclosed by orange grid lines
compare the same time series between weekdays and weekends.

5.3 Mobility Vitality

Using the results of our STA analysis, we were able to
identify the most representative time periods (lowest STA)
and the most unique time periods (highest STA).

In addressing RQ3, we combine the results of the differ-
ent spatiotemporal analyses to capture holistic patterns of
how people move within D.C. We specify which roads are
the most popular during different periods and which roads
are dominated by a specific mobility mode. In examin-
ing Fig. 6, we can see that cyclists and runners use D.C.’s
road network differently at different times7. On weekend

7For clarity, only the top 10 categories of four periods are
shown in the map.

mornings (WE1), a higher proportion of people choose to
run downtown compared to weekend afternoons (WE3).
During weekday afternoons (WD3), a higher percentage
of people prefer running downtown compared to the same
time period on weekends. However, at night, the number
of runners in the downtown core sharply declines, except
near the National Mall, whereas the frequency of down-
town travel by the other three modes is still high during
the evening. Nevertheless, the areas around the National
Mall and 16th St NW consistently attract the highest per-
centages of users across all four modes, regardless of the
period.

When discussing yearly trip volume, roads that are popu-
lar with at least three or more modes are almost all concen-
trated in downtown, whereas roads with low usage across



(a) Weekend Morning (WE1) (b) Weekday Night (WD4)

(c) Weekend Afternoon (WE3) (d) Weekday Afternoon (WD3)

Figure 6. Mobility Vitality, a measure combining four transit modes at four individual periods. This illustrates the spatial distribution
of the varying popularity of these four modes across different periods. In the legend, each type is followed by the combination of the
four modes (in the order of LS, LB, CB, ST, where ‘L’ indicates low and ‘H’ indicates high) and the total count of road segments in
that category. For clarity, only the top 10 categories for each specific period are labeled. Road segments belonging to the bottom six
categories are shown in gray to avoid excessive clutter and ensure the map remains legible.

all four modes are primarily located in the densely grid-
ded residential areas on the outskirts of the city. Fig. 7a
shows the most prominent categories of MV across all mo-

bility modes. As expected, parks and riverside trails con-
sistently show high volumes only for ST, indicating that
these routes are primarily chosen for recreational running



(a) Mobility Vitality
(Most prominent categories)

(b) Mobility Vitality
(Similarity over time)

Figure 7. Combination and comparison of Mobility Vitality across various time periods. Fig. 7a shows the spatial distribution of our
four mobility modes. Notably, for clarity and simplicity, only the 10 most prominent categories out of the total 16 are presented. Fig. 7b
illustrates how many time periods among the four in Fig. 6 share the same category for each road segment.

rather than for shared biking or e-scooters. However, Mili-
tary Rd NW in Rock Creek Park and Anacostia Fwy along-
side the Anacostia River remain popular across all four
modes. And both roads are classified as principal arterial
roads in D.C.

When examining how much the category of each road seg-
ment changes across these four representative periods, we
found that the roads mentioned above mostly belong to the
same category throughout a typical week (blue and green
roads in Fig. 7b). This indicates that people’s likelihood or
willingness to choose these biking or running routes re-
mains relatively constant over time. Blue represents roads
that belong to the same category across all four periods.
When compared to the yearly volume map on the left, we
can see that these roads are at the two extremes of traffic
flow: they are either in the most suburban, low-traffic ar-
eas or in the busiest central areas like the National Mall
and 16th St NW. The roads marked in green, which have
the same category across three periods, are mostly con-
centrated in the middle of the city. The difference for these
roads primarily occurs in WD4, where the volume shifts
from high across all four modes to high only for the three
biking modes, while running volume drops to low.

Unlike the blue and green categories, which tend to clus-
ter together in different areas, the red and orange roads

almost always appear together but are scattered through-
out the suburban areas surrounding the city center. They
are not connected but rather dispersed across various loca-
tions (Fig. 7b). Compared to the left figure, these roads do
not share common traffic volume characteristics—some
belong to high-volume categories, others to low-volume
categories, and some are even gray in the left figure, indi-
cating that they belong to categories with very few counts,
making them "distinctive" roads. Despite their differences
in traffic volume across the four modes, these roads consis-
tently appear where main roads intersect with side roads,
where large and small blocks meet, and at the boundaries
between blocks with different functions, such as parks,
residential areas, and university campuses.

6 Discussion

This study introduces MV, a novel measure that captures
dynamic interactions through active and micro-mobility
modes, providing an in-depth understanding of urban plan-
ning and policy-making. Looking at the analysis of Wash-
ington, D.C., for instance, biking and scooter activity is
very focused downtown, whereas running routes seem to
be more spread out in parks and along riverwalks. This



is indicative of certain infrastructure investments, such as
a need for increased bike lanes downtown and increased
recreational spaces in peripheral areas.

MV also reveals time-of-day differences in transportation
mode usage: for example, in D.C., biking usage for com-
muting is much higher during rush hours, while evening
usage is more varied. This points to the development of
plans and policies that could target projects specific to
certain times, such as dynamic lane allocations or adjust-
ments in bike-sharing systems depending on peak/off-peak
hours. Furthermore, our analysis shows that shared micro-
mobility patterns fluctuate more significantly within a sin-
gle day than between matching time periods on week-
days and weekends. This implies that dynamic policy-
making should focus on real-time, intra-day adaptations
rather than relying on separate policies for weekdays ver-
sus weekends.

From a policy perspective, MV helps identify underserved
areas for infrastructure improvements and prioritize high-
volume, high-similarity, and high-MV roads for mainte-
nance. Furthermore, suggest interventions to increase ac-
cessibility in low-MV areas. More importantly, visualizing
traffic across different modes helps urban planners opti-
mize transport networks, improve safety, and implement
human-oriented design.

Limitation and Future Work

This study has a few limitations that future work can
address. For simplicity, we used the median to divide
each mode’s volume into high and low categories, but
more granular divisions could be more informative. Ad-
ditionally, our study only presented road usage patterns
using aggregated eight-weekly time series. This prelimi-
nary analysis serves as a foundational framework that can
be extended to various temporal granularities to uncover
more nuanced insights into traffic dynamics. For exam-
ple, by segmenting data into hourly intervals, where each
hour represents a separate time series with 60 minutes as
timestamps, we can identify the most distinctive hours
of the day in terms of road usage. This finer granular-
ity allows for the detection of specific patterns, such as
peak congestion periods or quieter off-peak times, facili-
tating more precise traffic management strategies. Future
research could build upon this framework by incorporat-
ing real-time traffic data, enabling a more detailed and dy-
namic understanding of traffic flow. Last but not least, ex-
panding mobility types to include modes like taxis, buses,
and light rail could further enhance the analysis.

Another limitation is the underrepresentation of certain
population groups. First, the bike-sharing and shared e-
scooter datasets used in our analysis do not fully repre-
sent overall biking and e-scootering patterns in the city,
as they exclude personal biking and privately-owned e-
scooter trips. Similarly, the Strava dataset primarily cap-
tures activities of more athletic and ambitious runners,
which likely introduces bias by overlooking casual or less

active runners. Additionally, pedestrian activity, which
constitutes an essential component of active mobility and
significantly contributes to vitality, was not included in this
study. Therefore, incorporating broader datasets—such as
personal device tracking, pedestrian flow data, and sur-
veys—could provide a more comprehensive picture of mo-
bility vitality in future research.

7 Conclusion

This study advances the understanding of urban vitality
by introducing the concept of mobility vitality, which cap-
tures dynamic moving activities, in this case through the
lens of active and micro-mobility modes. We quantified
both spatial and temporal variability among four different
modes of mobility, namely dockless Lime scooters, dock-
less Lime bikes, docked Capital Bikeshare, and Strava
running activities. Furthermore, we use a spatiotemporal
alignment approach to assess similarities and differences
between modes and across regions, allowing us to generate
a measure of mobility vitality for each region of the city.
This will offer a new, holistic approach for urban plan-
ners and policymakers to find high-usage regions across
different modes of mobility. The approach will enable the
understanding of the underlying mechanism of active and
micro-mobility with a view to enhancing efficiency in ur-
ban transport networks. Understanding and leveraging dy-
namic patterns of human movement will allow us to build
more vibrant, livable, and sustainable cities.
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