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Abstract

The recent increase in user-generated content and social media adop-
tion in developing countries offers an unprecedented opportunity to better
understand the accessibility and spatial distribution of financial services in
sub-Saharan Africa. Financial inclusion has been identified as a priority by
multiple agencies in the region and on-the-ground efforts are currently un-
derway to identify previously unknown financial access points in numerous
developing African countries. Existing techniques for estimating the location
of these access points rely on spatial analysis of often outdated or unsuit-
able publicly available datasets such as population density, road networks,
etc., as well as expensive and time consuming surveys of locals in the re-
gion. In this work we propose an approach to augment existing spatial data
analysis techniques through the inclusion of user-generated geo-content and
geo-social media data. Through a comparison of standard regression models
and machine learning techniques, this work proposes the use of alternative
data sources to build prediction models for identifying financial access loca-
tions in countries where current estimation models are insufficient. With a
better understanding of geospatial distribution patterns this work aims at
reducing data acquisition costs and providing decision makers with critical
data more quickly and efficiently. Finally, we present a mobile application
built on the outcomes of this analysis that is currently being used to better
inform on-the-ground data collection efforts.
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1. Introduction1

By current estimates, the number of individuals in sub-Saharan Africa2

(SSA) with bank accounts at formal financial institutions is 25% [1], a num-3

ber that has remained relatively stagnant, growing by only a couple of per-4

centage points over the past four years [2]. By comparison, mobile money5

accounts in East African countries, especially Kenya and Tanzania, have in-6

creased dramatically. The term mobile money here represents the use of7

mobile devices to transfer money between users, pay bills, or purchase items.8

Mobile money providers are those companies through which an individual9

deposits or withdraws local currency to or from their mobile money account.10

Mobile money providers are typically fixed-location, corner stores to which a11

customer can go to exchange currency for mobile money (see Figure 1 for an12

example). Safaricom, a leading Kenyan mobile network operator, launched13

a mobile device-based payment system called M-Pesa in 2007 that revolu-14

tionized financial transactions across much of East Africa. In 2016, it was15

estimated that mobile device penetration in Kenya surpassed 90%, an in-16

crease of over 6% in one year [3]. And while only a small portion of the17

Kenyan population have traditional bank accounts, over 58% percent of in-18

dividuals in Kenya use mobile money [4] to transfer funds between people19

and/or businesses or borrow money by way of a loan [5]. Mobile money has20

such a dominant role in the Kenyan economy that in 2014 M-Pesa, by far21

the leading mobile payment system, accounted for over 60% of the country’s22

gross domestic product [6].23

While the rise of mobile money has shown to reduce poverty rates [7] and24

increased gender equality in many developing nations [8], there are concerns25

over economic impact [9], taxation [10], and the influence of a single mo-26

bile network operator. The external focus on the striking growth in usage27

of mobile money has also served to magnify the financial divide within the28

country. During the FinAccess 2014 conference Njuguna Ndung’u, Governor29

of the Central Bank of Kenya, gave a keynote address in which he encouraged30

the expansion of financial inclusion in Kenya [11]. In this keynote, Professor31

Ndung’u reiterated that while a considerable portion of the Kenyan popula-32

tion has access to mobile money infrastructure, a quarter of the population33

remains entirely excluded. With the goal of increasing financial inclusion, the34

Central Bank of Kenya, specified that a first step should include the iden-35
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Figure 1: An example of a mobile money provider in Uganda. Source: Wikimedia Com-
mons. License: CC 4.0

tification of all Financial Touch Points (FTP)1 within the country. While36

there are on going efforts to collect location information on FTP providers37

in Kenya [12, 13], the turn-over rate and movement of providers within the38

country are high. In actuality, the locations of many FTP are still not known.39

Efforts to better understand the distribution of financial services in Kenya40

are on-going. These are focused on the spatial distribution of mobile money41

infrastructure to identify opportunities for business expansion, agricultural42

services, etc. [14, 15, 16]. On-the-ground data collection efforts continue43

in SSA regions with the Humanitarian OpenStreetMap Team [17] following44

other teams such as Brand Fusion [12] in their data collection efforts. Most of45

these on-the-ground efforts involve canvassing entire countries on motorcycles46

with GPS units in an attempt to identify new FTP locations or view the47

identification of FTP as a secondary goal to mapping a country. Collectors48

focus their efforts on highly populated regions, surveying locals and known49

FTP providers [18]. In general though, there is a lack of informed strategy on50

1These include mobile money providers, brick and mortar banks, etc.
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where to look for these financial touch points in the most efficient manner.51

Population density maps and local knowledge are an important step and52

our goal is that the methods proposed in this work can be used to augment53

existing ones. To this end, this work aims to build a model for predicting the54

location of financial touch points based not only on population densities, but55

other publicly available datasets, both traditional authoritative (e.g., land56

use, school locations) and user-contributed (e.g., volunteered information57

and social media).58

In the last year, the number of smartphone users in SSA has grown sub-59

stantially. The percentage of users in Kenya with smartphones was roughly60

44% in 2016, a substantial shift from the previous year of 27% [19]. This61

growth in smartphone access has also given rise to a substantial increase in62

social media usage. Recent reports show social media usage at 58% of the63

most popular activities conducted with a mobile device followed by search64

engines at 39% and email at 30% [19]. Facebook, one of the most popular65

social media platforms in the world has recently focused their attention on66

SSA as a region for expansion [20]. These efforts are paying off with recent67

statistics showing that 170 million Africans have joined Facebook, most of68

which connect through their mobile device [21]. Of these, 6.1 million are from69

Kenya. [22]. Twitter, has also seen an increase in adoption with monthly ac-70

tive users counted at roughly 2.2 million [23]. As users interact with these71

platforms, they contribute significant amounts of digital content. This con-72

tent ranges from photographs and opinions to restaurant reviews and group73

chats. The fact that much of this interaction happens via mobile device is74

of importance as well. Many smart devices contain high resolution location75

sensors such as GPS or Wi-Fi and social media applications make use of76

this information which lead to social contributions that contain geographic77

data such as places, local businesses and geotagged social posts. Through78

the various application programming interfaces (APIs) offered by these plat-79

forms, researchers now have access to much of this published content. The80

resolution of these data both spatially and temporally offer unique insight81

into the behavior of individuals within the region. Not only can these data82

be used to enhance low resolution (and often outdated) population density83

maps but contributions such as those that mention local businesses can be84

used to better predict the location of previously unmapped entities, such as85

mobile money providers and other FTP.86

Social media data are often defined as a subcategory of user-generated87

content (UGC), one that may contains geographic information, but is often88
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not contributed explicitly with the geographic content in mind [24]. Another89

source of UGC common to the geography domain is volunteered geographic90

information (VGI) [25]. One of the popular platforms for this type of in-91

formation is OpenStreetMap,2 a rich set of geospatial data contributed to,92

and curated by, thousands of citizens worldwide. In recent years there have93

been substantial efforts to increase coverage and quality of geographic data94

and maps in SSA.3 These data in many cases are more up-to-date and have95

greater coverage than many government or commercial geographic datasets96

and knowing this, we propose their inclusion in our approach to predicting97

financial access location in Kenya.98

Research Contribution99

The purpose of this work is to develop a method for predicting financial100

touch points in Kenya. Specifically, we are interested in determining if at101

least one FTP can be identified within a specific set of grid cells. Building102

on traditional authoritative datasets, we examine the fitness of emerging data103

sources for inclusion in an FTP prediction model and ultimately as a layer in104

a mobile application for data collection. To this end we address the following105

four research questions (RQ).106

RQ1 With the goal of identifying financial touch points in Kenya, how do107

geo-tagged social media and volunteered geographic information fare108

in comparison to authoritative datasets? To address this question,109

we explore the distribution and correlation of various datasets with110

known FTP in Kenya. We report on the accuracy of using these data111

independently for estimating FTP counts and locations.112

RQ2 Can social media data and volunteered geographic information be used113

in combination with existing authoritative datasets to produce bet-114

ter FTP prediction models than those generated from the datasets in-115

dependently? Here we examine two traditional regression methods,116

namely ordinary least squares and spatial lag as well as two machine117

learning regression approaches, namely support vector regression and118

random decision forest (RDF). The accuracy of these models are re-119

ported via three measures.120

2http://openstreetmap.org
3https://hotosm.org/projects
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RQ3 Provided a best fit model, can we validate this approach through on-121

the-ground identification of previously unknown FTP? Secondly, how122

accurate is the best fit model in identifying FTP in Kenya’s neighboring123

country of Uganda? We assess and report on the accuracy of the model124

and identify important differences between the two countries that likely125

impact the accuracy of the model.126

RQ4 Can the FTP prediction model provide the foundation of a mobile ap-127

plication for FTP data capture and validation? We present a prototype128

mobile application currently employed by users on-the-ground to add,129

edit and delete FTP locations, driven by an FTP prediction layer gen-130

erated from our best fit model.131

The remainder of this article is organized as follows. In Section 2 we132

discuss existing research related to the topic and methods, and in Section133

3 we present the various datasets used in this work. The methods used in134

predicting financial touch points are given in Section 4, with the results of135

the analysis shown in Section 5. Two different approaches for validating the136

data set are presented in Section 6 with an overview of the mobile application137

in Section 7. Finally, conclusions and next steps are stated in Section 8.138

2. Related Work139

Existing work in this area has highlighted the importance of understand-140

ing mobile financial services in sub-Saharan Africa specifically as it relates141

to poor populations [26, 27]. Some of this research has used data collected142

directly from mobile devices [28] while others have focused on the broader143

impact of the technology [29]. Mobile money usage is not unique to sub-144

Saharan Africa. Many other countries have adopted mobile money systems,145

China being one of the leading proponents of the technology [30]. Recent146

reports have shown that payment systems suck as Alipay and WeChat pay147

are having significant impacts in shaping the country’s economy [31]. In re-148

cent years, the focus has shifted from the availability of mobile devices to149

the actual usage patterns and applications. Short messaging service (SMS)150

and social media usage have grown substantially and are having a sizable151

impact on the developing world for everything from political movements [32]152

to monitoring and tracking health epidemics (e.g., Ebola) [33].153
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As social media usage and user-generated content grows in developing154

countries, so does that availability of geotagged content [34]. The devel-155

opment of crowd-sourcing crisis tools such as Ushahidi [35] and Missing156

Maps [36] have successfully demonstrated that geotagged social content can157

have a substantial impact during crisis relief efforts. Recent work by Adams158

et al. [37] has also shown that user-generated geo-tagged content from travel159

blogs and Wikipedia articles can be used to identify thematic regions around160

the world further emphasizing the power of crowd contributions. Exist-161

ing work by Linard et al. [38] has examined the inclusion of volunteered162

geographic information in enhancing the WorldPop dataset. Their efforts163

demonstrated that OpenStreetMap vector data can be used to combination164

with satellite imagery to further refine global population estimates. Further165

work has used a combination of VGI-based gazetteer data and social me-166

dia ‘check-ins’ to determine citizen locations [39] and prioritize evacuation167

zones [40].168

From a methodological perspective, machine learning regression models169

have been quite successful in a variety of scenarios. The range of literature in170

this area speaks to the complexity and variety of models. Previous work on171

the role of spatial autocorrelation in standard regression [41] is making it’s172

way into machine learning (e.g., SVM, RDF, etc.) discussions [42]. Existing173

work from Song et al. [43] compared spatial econometric models to a random174

decision forest approach in modeling fire occurrence and demonstrated the175

benefits and disadvantages of the different approaches. Stevens et al. [44]176

employed a RDF model in disaggregating census data for population map-177

ping with the goal of enhancing the WorldPop dataset and recent work on178

identifying landscape preferences determined that an RDF approach applied179

to Flickr photos produced the best results [45].180

3. Data181

In this section, we provide an overview the datasets used in constructing182

the FTP identification models. The financial touch points are introduced183

as well as the predictors classified as VGI, Social Media, and Authoritative184

datasets.185
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3.1. Financial Touch Points186

On-the-ground data collection efforts by Brand Fusion4 resulted in a187

dataset of verified FTP in Kenya [12]. Brand Fusion estimates that these188

data, collected in 2015, represent a high portion of all FTP within Kenya189

but the data are non-exhaustive as FTP may have been missed by data190

collectors, locations may have been established since the last round of data191

collection, or FTP may have moved. The purpose of this paper in this case is192

to use geospatial indicators near to these known FTP to predict and identify193

previously unidentified FTP in Kenya. This 2015 Brand Fusion dataset iden-194

tified 83,273 FTP in Kenya and these form the basis on which our prediction195

model is trained and tested. Figure 2 shows the distribution of these FTP in196

Kenya as green markers. The Humanitarian OpenStreetMap Team (HOT)197

collected FTP for neighboring Uganda [17]. In total, 45,417 verified FTP198

were identified in Uganda and these points will form the basis of our follow-199

on analysis. Visually, the highest density of FTP appear to occur in densely200

populated regions around Nairobi, Nyanza (Kenya), Kampala and Mbarara201

(Uganda). Spatial analysis of these FTP locations through Moran’s I [46]202

and Ripley’s K [47] functions confirm this, indicating clear spatial clustering203

within these datasets. While the high population areas show the highest204

numbers of FTP, it is the rural regions that are of particular interest to205

government and non-government agencies.206

3.2. Predictors207

We compare and contrast a number of different datasets from a wide208

variety of sources with the purpose of determining how the inclusion of these209

data aid in predicting FTP locations. Table 1 lists these datasets along with210

their sources and our assigned category tag. These categories consist of two211

types of user-generated content, namely volunteered geographic information212

(VGI) and social media (SM) as well as more traditional datasets which by213

comparison we label authoritative (AUTH).214

3.2.1. Authoritative Datasets215

We define the authoritative datasets in this work as those not created216

through direct citizen contributions or social media data extraction. These217

datasets were generated using more authoritative and controlled mechanisms218

4http://www.brandfusion-africa.com/services/mobile-money
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Figure 2: Financial Touch Points (FTP) in Kenya (83,273) and Uganda (45,417).
Base map by ESRI.

and are therefore, allegedly, less prone to user bias or classification error.219

These data have been used in numerous other studies in estimating every-220

thing from population density and land use to human mobility and predicting221

disease outbreak [48, 49, 50, 33].222

The 2015 WorldPop data contains high resolution (∼100m cell size) hu-223

man population distribution estimates. The data was generated from a com-224

bination of remote sensed imagery, census and existing geospatial datasets225

(e.g., road networks) [44, 51]. The Socioeconomic Data and Application226

Center in NASA’s Earth Observation System Data and Information System227

group produces the Global Rural-Urban Mapping Project (GRUMP) data.228

Similar to the WorldPop dataset, these data are produced through a combi-229

nation of census and satellite data (including night-time lights) at a resolution230

of roughly 1km. Version 1 of this dataset was produced in 2011 and provides231

rural and urban population density estimates for the year 2015 [52, 53]. Urban232

land cover type regions were also extracted from the 0.5 km MODIS-based233
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Dataset Description Source Year Category
Estimated persons per 3 arc-second (roughly 100m) cell Worldpop 2015 AUTH
Primary & Secondary School Locations OpenAfrica 2015 AUTH
0.5 km MODIS-based Global Land Cover Climatology USGS 2014 AUTH
Global Rural-Urban Mapping Project (GRUMPv1) NASA 2011 AUTH
GeoNames Places GeoNames 2016 AUTH
LandScan-based Populated Places Natural Earth 2016 AUTH
OSM Roads OpenStreetMap 2016 VGI
OSM POI OpenStreetMap 2016 VGI
Facebook Places Instagram API 2016 SM
Tweets Twitter API 2016 SM
Foursquare Venues Foursquare API 2016 SM

Table 1: Datasets used in identifying financial touch points.

Global Land Cover Climatology dataset [54] generated in 2014.234

Dataset Kenya Uganda

Facebook Places 8107 4377
Twitter Tweets 204538 156426
Foursquare Venues 4016 2075
OpenStreetMap POI 16739 44203
OpenStreetMap Roads (km) 98381 48676
Schools (Primary & Secondary) 37317 29372
GeoNames Places 26038 25978
NE Populated Places 56 42

Table 2: Counts for the predictor datasets in Kenya and Uganda. Note that both the
WorldPop and GRUMPv1 data are not count based datasets and so are not reported
here.

Primary and Secondary school locations were accessed from OpenAfrica,235

a web portal for open data in African countries. School locations for Kenya236

were most recently updated in 2015 and contributed by the Kenya Open237

Data Initiative [55]. Similarly, school locations for Uganda were collected by238

the Uganda Bureau of Statistics and the Ministry of Education and Sports239

from 2004–2010. Places were downloaded from the GeoNames placename240

gazetteer which is made up of a number of sources, most notably the National241

Geospatial-Intelligence Agency and the U.S. Board on Geographic Names for242

regions outside of the United States. This point data represents everything243

from mountain tops to water wells. Natural Earth Populated Places data244

were used in this research which is based on LandScan-derived population245

estimates [56]. Natural Earth devised the dataset based on regional signifi-246

cance of places over population census, differentiating it from the grid-based247
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systems previously mentioned [57]. Counts of these datasets are shown in248

Table 2.249

3.2.2. User-contributed Data250

User-contributed data are those created either via volunteered geographic251

information (VGI) means or social media (SM) contribution. Typically con-252

tributions to these data are made from non-experts and do not rely on statis-253

tical models built from existing data sources. Anyone can add a place, venue,254

road, or post (tweet) to one of these datasets without requiring secondary255

approval.5256

Volunteered Geographic Information257

OpenStreetMap Points of Interest were downloaded for Kenya using the258

OsmPoisPbf extraction tool.6 Table 2 lists the total number of POI with259

roughly 2% (339) of these being tagged as MONEY BANK or MONEY EX-260

CHANGE. On examination of these tagged POI, the overwhelming major-261

ity of these were brick-and-mortar bank branches with few mobile money262

providers or lenders. These mobile money providers and lenders are ei-263

ther corner stores / grocers or dedicated shops (e.g., M-Pesa). The Open-264

StreetMap Road data was also extracted in January 2016 and consists of265

high resolution road network data contributed by volunteers. These data266

are notably of a higher resolution and wider spatial coverage than the road267

network datasets available from the Kenyan government GIS web portal.268

Social Media Data269

Social media data for this research involved three sources of geotagged270

content. Instagram and Foursquare both have digital gazetteers of place lo-271

cations contributed by individuals while twitter allows contributors to geotag272

their posts with geospatial coordinates.273

The Instagram locations API7 was used to extract Points of Interest for274

Kenya. Instagram uses Facebook Places as it’s gazetteer, with the purpose of275

allowing individuals to tag their photographs with a place name. Their API276

offers limited access to this gazetteer. In total, 8107 places were accessed in277

5Note that there is a community-based validation process in OpenStreetMap
6https://github.com/MorbZ/OsmPoisPbf
7https://www.instagram.com/developer
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Kenya. The Twitter Streaming API8 was used to access geotagged tweets278

within Kenya over a 5 month time span from January through May 2016.279

Only those tweets that included precise geographic coordinates and sourced280

from the Android Twitter App or iPhone Twitter App were employed here.281

In this work, only the geographic location of the tweets was relevant for this282

research though future work may explore the content and language variation283

within the text of the tweets. The Foursquare Venues Search API9 was284

employed to access Points of Interest in the Foursquare gazetteer. Foursquare285

began curating POI in March of 2009 and has been more transparent in how286

they collect places [58] than Facebook. Notably Facebook has a much larger287

user-base (2 billion vs. 45 million) however.288

4. Methods289

To start, a spatial grid was generated over the entire country of Kenya290

at a resolution of 0.02 degrees, or approximately 2.2 km at the equator.291

Selection of this resolution was based on trade off between reasonable travel292

time within each grid (for on-the-ground collection efforts and actual FTP293

users) and reduced computational complexity. This resulted in 120,111 grid294

cells across Kenya. The grid was intersected with the FTP data producing an295

FTP grid layer with aggregated count cells ranging in value from 0 to 2,402 (in296

Nairobi). Similar layers were constructed for each of the predictor variables297

using the same grid bounds and resolution. Finally, each gridded layer was298

normalized to between 0 and 1. This was to ensure that each variable could299

be compared to one another without one predictor overpowering the others.300

While not essential in a linear or spatial regression model, it is particularly301

important for a random decision forest approach [59].302

4.1. Individual predictors303

The goal in the initial analysis for RQ1 is to determine how accurate each304

individual dataset is in identifying FTP. We first examine the correlation be-305

tween each gridded dataset and the gridded FTP layer. Table 3 shows the306

Spearman’s correlation matrix of all predictors. Notably, all datasets show307

positive correlation with the number of FTP per cell. The Worldpop, Grump308

and School datasets show the highest correlation with Facebook Places also309

8https://dev.twitter.com/streaming
9https://developer.foursquare.com
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showing a reasonably high value. Interestingly tweets have a relatively low310

correlation with FTP (0.11) and an even lower correlation with the other311

social media / user-generated content datasets (e.g., 0.05, 0.02) indicating312

that there is little similarity between our social media places and the geo-313

tagged tweets. On the other hand, GRUMP data are highly correlated with314

the WorldPop dataset.315

We then calculate the F -score for each predictor against the FTP. F -score316

measures the relationship between the precision and recall of these datasets317

(Equation 1). Precision, in this case, is the number of FTP locations correctly318

identified divided by the total number of locations identified whereas recall is319

the number of FTP locations correctly identified divided by the total number320

of actual FTP locations.321

F1 = 2 · precision · recall

precision + recall
(1)

Assessing the accuracy of a predictor via the F -score involves a trade-322

off. Figure 3 shows precision versus recall for each of the predictor variables.323

Notably, the authoritative datasets show a steeper decrease in recall as pre-324

cision drops below 0.4 whereas the user-contributed datasets tend to show325

fairly low trade-offs between the precision and recall. The highest F -score326

of 0.49 is found with the WorldPop data and a low of 0.07 with the Nat-327

ural Earth Populated Places location data (Table 4). While these F -scores328

in combination with the correlation matrix show that the predictor datasets329

are of value in estimating FTP locations, on their own they only correctly330

identify a limited number of FTP in Kenya.331

4.2. Weighted combination of variables332

Provided the accuracy of the predictors independently, we next explore a333

number of methods for combining the predictors in order to better identify334

the location of financial touch points in Kenya. Specifically, to address RQ2335

we test four approaches to FTP identification, namely ordinary least squares336

regression, spatial lag regression, support vector regression, and random de-337

cision forest. The purpose of examining all of these methods is to determine338

which approach most accurately predicts the location of known FTP and339

produces a model on which to base further investigation into unknown FTP340

locations. To be clear, the regression approaches produces probability values341

that are used to in a prediction task of FTP in a grid cell or not. These342
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Figure 3: Precision vs. recall graphs for all independent variables.

probability values are later used in the generation of a prediction layer for343

inclusion in a mobile data collection application.344

4.2.1. Ordinary Least Squares Model345

A standard linear regression model was executed as a first step to deter-346

mine the impact of each independent variable (predictor dataset) on identify-347

ing FTP. The data were separated by category as shown in Table 1, namely348

VGI, SM, or AUTH. Linear regression models were constructed for each349

category independently as well as combined. The independent variables, co-350

efficients, R2, and residual standard error (RSE) for each model are shown in351

Table 5. Regarding multicollinearity between the independent variables, we352

note some small changes in the regression coefficients as predictors are added353

to the model. The most notable change here is in the OpenStreetMap POI354
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Dataset Max F-score

Schools 0.38
GRUMP 0.44
WorldPop 0.49
Landuse Urban 0.12
GeoNames Places 0.31
NE Populated Places 0.07
Facebook Places 0.40
Foursquare Venues 0.23
Twitter Tweets 0.33
OSM POI 0.29
OSM Roads 0.21

Table 4: Maximum F-score values for each of the predictor variables independently.

dataset changing to having a negative influence on FTP identification when355

combined with all other datasets. Similarly, we see the tweets dataset change356

from having a significant impact on the model to not longer being significant.357

We calculated the condition indices (condition number test), measures of ill-358

conditioning in the predictor matrices and found that the regression models359

did not have significant multicollinearity. The conditional index values for360

the respective regression models are 5.87 (AUTH), 1.53 (SM), 1.77 (VGI),361

7.43 (Combined).362

The AUTH-based regression produced an R2 value of 0.412 with all co-363

efficients being significant (P<0.001). Based on the coefficients, the World-364

Pop density values had the highest positive influence on the dependent FTP365

variable with GRUMP data also showing a high value of influence. The366

GeoNames places dataset had a small, but negative influence on the model.367

The SM -based regression model produced a lower R2 value meaning that368

less of the known FTP locations could be explained by our place-based369

and geotagged social media data. All coefficients were deemed significant370

with Facebook places and Tweets producing larger positive coefficents than371

Foursquare venues. The V GI-based linear regression models produced the372

lowest R2 value with OpenStreetMap POI having a much larger influence on373

the model than OpenStreetMap Roads. Combining all independent variables374

in one OLS linear regression model produced the highest R2 value with all375

coefficients having a significant impact with the exception of tweets and the376

lowest residual standard error of the OLS models. As a first, but important,377
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step, these results are encouraging and indicate that a combination of so-378

cial media, VGI and authoritative data produce better results for predicting379

financial touch points than each data type independently.380

Dataset OLS Model Coefficient Spatial Lag Model Coefficients
Authoritative Datasets (AUTH) Model
Schools 3.80E-02 6.09E-02
GRUMP 9.56E-02 4.76E-02
WorldPop 2.23E-01 1.77E-01
Landuse Urban 1.06E-02 7.59E-03
GeoNames Places -4.58E-02 -3.45E-02
NE Populated Places 5.54E-02 5.70E-02
Spatial Lag (Rho) NA 2.33E-01

R2 0.412, RSE 4.32E-03 R2 0.425, RSE 4.265E-03
Social Media Datasets (SM) Model
Facebook Places 1.58E-01 1.33E-01
Foursquare Venues 5.55E-02 5.24E-02
Twitter Tweets 1.41E-01 3.39E-02
Spatial Lag (Rho) NA 5.48E-01

R2 0.267, RSE 4.82E-03 R2 0.423, RSE 4.27E-03
Volunteered Geographic Information Datasets (VGI) Model
OSM POI 3.54E-01 2.34E-01
OSM Roads 8.57E-04 4.28E-04
Spatial Lag (Rho) NA 5.52E-01

R2 0.116, RSE 5.29E-03 R2 0.285, RSE 4.76E-03
Combined (All data) Model
Schools 2.78E-02 3.05E-02
GRUMP 9.25E-02 5.22E-02
WorldPop 1.94E-01 1.60E-01
Landuse Urban 2.00E-03 -8.92E-04
GeoNames Places -9.83E-02 -8.23E-02
NE Populated Places 3.04E-02 3.21E-02
Facebook Places 9.55E-02 9.59E-02
Foursquare Venues 4.30E-02 4.38E-02
Twitter Tweets 3.08E-02* -8.72E-03*
OSM POI -6.13E-04 1.02E-01
OSM Roads 1.05E-01 -6.23E-04
Spatial Lag (Rho) NA 2.49E-01

R2 0.489, RSE 4.02E-03 R2 0.502, RSE 3.97E-03

Table 5: Results of the OLS and Spatial Lag regression models with four combinations of
predictor variables. All coefficients are significant (p < 0.001) except for Twitter OLS*
which is not significant and Twitter SLM* with p < 0.05.

4.2.2. Spatial Lag Model381

Using the Jarque-Bera test [60], the variables in the OLS models were382

assessed for normality of the distribution of errors. All probability values383

for the tests were very low indicating non-normal distribution of the error384

terms. Our next step was to geospatially map the residuals of our best-fit385
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linear regression model in order to test for spatial autocorrelation in our pre-386

dictors. Visually, the residuals appeared to show a clear spatial pattern with387

underestimation occurring near major cities such as Nairobi and overestimat-388

ing in more rural regions to the North. Moran’s I analysis of the residuals389

supported this assessment with significant global values of 0.305, 0.266, and390

0.100 for SM, VGI, and AUTH models respectively, with a distance threshold391

of 0.02 degrees (distance to the nearest grid cell). Local Moran’s I analysis392

also found highly significant spatial clustering around the high density FTP393

regions, predominantly major cities. These results, combined with low prob-394

ability values from Breusch-Pagan tests [61] for heteroskedasticity indicate a395

need to account for spatial autocorrelation in our regression analysis.396

A spatial lag [62] regression model (Equation 2) was constructed rely-397

ing on an Euclidean distance weighted matrix using Queen contiguity at a398

threshold of 0.02 degrees. Y represents the vector of response variables, ρ the399

coefficients of spatial regression terms, making WY the spatial lag weighted400

response. X is the matrix of independent predictors, β the coefficient matrix401

of X and ε the random error vector. The results of the Spatial Lag regression402

models for the 3 groups of predictor variables and the combined model are403

shown in Table 5.404

Y = ρWY + βX + ε (2)

In all cases, there was an increase in the amount of variance explained405

(R-squared) over the OLS regression models, and a relative decrease in the406

standard error of the residuals. The WorldPop population dataset still had407

a large influence in the combined dataset model (based on the coefficient408

value) while Tweets remained low in contribution and significance. The spa-409

tial lag (Rho) coefficients all had significant impacts on the respective models410

demonstrating that accounting for spatial dependency in such a model pos-411

itively influenced the ability to predict FTP in Kenya. These results again412

indicate that combining datasets from various user-generated and authori-413

tative sources positively influence the ability to predict FTP and that the414

inclusion of a spatial lag term positively contributes to an explanation of the415

variance in our model.416

4.2.3. Support Vector Regression417

Support vector machine (SVM) analysis takes a different approach to418

prediction than the previous two analyses. SVM is nonparametric and ap-419

proaches regression through a kernel function [63, 64]. To start, we used an420
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epsilon (ε = 0.1) type of regression with a linear kernel.10 This approach421

attempts to find a separating hyper-plane between the two classes, in our422

cases occurrence of FTP in a grid cell or not, with a maximum gap between.423

In general, SV regression perform better with a higher number of dimen-424

sions, or predictor variables in our case, and really only if the combination425

of these variables almost certainly leads to a known FTP. In our cases, nei-426

ther of these conditions hold true as the number of datasets (dimensions)427

is relatively small and based on our previous OLS and spatial lag analysis,428

the variance explained is low. While this form of analysis was tested on our429

dataset, it primarily acts as a first comparison step in a machine learning430

approach to this problem.431

4.2.4. Random Decision Forest432

Random decision forests (RDF) [65] are an ensemble learning method for433

regression, in our case, that construct a set of decision trees for the purpose434

of prediction. An optimal threshold value for identifying the occurrence of435

an FTP or not in a grid cell is calculated. A random forest aims to correct436

for overfitting, known to happen in a standard decision tree approach [66].437

Dataset IncNodePurity
GRUMP 2.32E-02
WorldPop 2.29E-02
Schools 2.22E-02
Landuse Urban 5.23E-03
Twitter 1.06E-02
OSM POI 9.62E-04
Geonames 4.27E-03
Facebook 1.69E-02
OSM Roads 5.98E-05
NE Major Towns 1.00E-03
Foursquare 4.75E-03

Table 6: Incremental Node Purity of the variables in the random decision forest model.

The R RandomForest package11 was used to fit a random decision forest438

regression model to the FTP data based on each of the category predictor439

variables independently as well as all together. This resulted in a 1.39 × 105
440

mean of squared residuals explaining 55% of the variance. This approach441

used 500 trees with 4 variables tried at each split. The incremental node442

10R package: https://cran.r-project.org/web/packages/e1071
11https://cran.r-project.org/web/packages/randomForest/
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purity for the model is shown in Table 6 and reports on the average change443

of impurities of a tree node (in which the variable was used) before and after444

a split. Plotting the percentage increase in mean square error (MSE) for445

the combined approach (Figure 4) we find that many of the authoritative446

datasets are the most important to the regression fit. Tweets, OSM POI and447

Facebook places all positively contribute to the model, with OSM Roads, NE448

Populated Places and Foursquare venues having little impact on the RDF fit.449

Foursquare

NED Major Towns

OSM Roads

Facebook

Geonames

OSM POI

Twitter

Urban/Rural

Schools

WorldPop

GRUMP

Percentage increase in MSE

−
5 0 5 10 15

Figure 4: Percentage increase in mean square error of prediction as a result of variable
shuffling. In essence, the higher the value, the more important that variable is to the RDF
regression model.

Given the known spatial dependency of the predictor variables (based450

on global and local Moran’s I measures), we elected to construct a separate451

RDF model which included latitude and longitude coordinates as covariables.452

There is some evidence in the existing literature that the inclusion of geospa-453

tial variables in such a model can influence the accuracy of prediction [42].454

Given the non-parametric nature of RDF, these variables could be included455

in the model and used in the prediction assessment. This led to a slightly456

higher percentage explained variance (0.56 vs. 0.55) and latitude was found457

to be the second most important contributing variable as determined by458

the percentage increase in mean square error. Again, though the prediction459
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method has changed substantially, the findings again support the fact that460

user-contributed data are important in location prediction.461

5. Results462

In this section we present the results of the analyses performed in the463

previous sections. Running each of the regression models (OLS, Spatial Lag,464

SVM, and RDF) with datasets from each of our categories (VGI, SM, AUTH)465

as well as a combination of all datasets (COMBO) produced a set of FTP466

prediction values for each cell in our Kenya grid, 16 different FTP predic-467

tion grids. These regression-based prediction grids were each then compared468

to our known FTP grid and three measures of accuracy were calculated for469

each prediction. Table 7 shows a comparison of the four regression techniques470

used in this work along with values for assessing accuracy of prediction in-471

cluding maximum F-score, Spearman’s Correlation and root mean square472

error (RMSE). The SVM and RDF methods also show results for regression473

models that included all predictor variables as well as latitude and longitude474

centroids of the grid cells.475

In general, the random decision forest regression model approach pro-476

duced the best results across most categories. The RDF model that included477

variables of all data categories, including latitude and longitude (LL) coor-478

dinates, produced the most accurate predictions as reported across all three479

measures. A maximum F-score of 0.74 is quite high considering the multitude480

of factors that may contribute to establishing an FTP. Similarly, a Spear-481

man’s correlation of 0.96 is extremely high but should by understood in the482

context of the sparsity of the FTP locations and predictions (most grid cells483

are 0). Lastly, the reported RMSE is low relative to the comparable RMSE484

values from all other methods and data categories.485

Figure 5 further explains the F-scores for highest performing RDF model486

by plotting precision versus recall for the random decision forest models split487

by data category. In comparison to Figure 3, the combined approach of488

all datasets produces a much better trade-off between precision and recall,489

specifically addressing RQ2 as stated in the introduction.490

Next, the residuals of the best-fit RDF regression model are mapped back491

to the location data. Visual inspection identifies very little clustering within492

the residuals and a Moran’s I analysis confirms this with a bootstrapped493

observed value of less than 0.001 implying a high degree of spatial randomness494

in these RDF-based residuals.495
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Method Category Max F-Score Correlation RMSE

OLS

VGI 0.31 0.340 5.29E-03
SM 0.43 0.516 4.82E-03
AUTH 0.49 0.678 4.32E-03
COMBO 0.51 0.699 4.02E-03

Spatial Lag

VGI 0.36 0.429 5.13E-03
SM 0.42 0.518 4.82E-03
AUTH 0.49 0.637 4.34E-03
COMBO 0.51 0.694 4.05E-03

SVM

VGI 0.28 0.301 5.35E-03
SM 0.35 0.417 5.17E-03
AUTH 0.47 0.582 5.21E-03
COMBO 0.55 0.590 5.17E-03
COMBO & LL 0.56 0.587 5.17E-03

RDF

VGI 0.31 0.606 4.69E-03
SM 0.43 0.849 3.20E-03
UGC 0.46 0.855 3.32E-03
AUTH 0.57 0.930 2.25E-03
COMBO 0.62 0.955 1.85E-03
COMBO & LL 0.74 0.960 1.79E-03

Table 7: Prediction results of the regression methods split by category of dataset. The
maximum F-score, Spearman’s Correlation and root mean square error are reported. Note
that all Spearman correlation values are significant (p < 0.01).

6. Validation496

6.1. Ground-truthing in Kenya497

One primary goal of this work was to build a prediction model that498

would allow researchers in the field to identify previously unidentified FTP499

in Kenya. With this goal in mind we used the best fit random decision forest500

model (reported in in the previous section) to predict FTP locations across501

Kenya. The predicted number of FTP locations was subtracted from the pre-502

viously known number of FTP per cell to produce a residuals map showing503

the difference between known and predicted FTP. Of these residual cells, we504

further investigated 47 that contained no known FTP and showed large neg-505

ative values (indicating high probability of finding FTP). Identifying these506

locations with high potential is important as a single, previously unknown,507

FTP could potentially be servicing a number of inhabitants; Inhabitants that508

were thought to be without access to financial services.509
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Figure 5: Precision vs. Recall for Kenya RDF predictions.

These 47 potential FTP cells were ranked based on the size of the residual510

and the latitude and longitude coordinates of the centroids were shared with511

researchers on the ground in Kenya (see Figure 6). The selection of these512

specific locations was also based on availability of data collection personnel513

in the region around Eldoret city in eastern Kenya. Data collectors traveled514

to these high-FTP-potential locations and recorded the presence and location515

of any FTP they found within 1km radius of the cell centroid (represented as516

square markers in Figure 6). In essence, the data collectors used the ranking517

of residuals for binary classification (decision to travel to location or not) and518

then counted the total number of FTP found within the vicinity of the marked519

location. In total, 203 previously unidentified FTP were recorded within the520

vicinity of these locations. In total, 41 of the 47 locations reported at least521

one previously unknown FTP location within a 1.1 km radius. Assigning522
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Figure 6: Previously unknown FTP location (47) identified by the prediction model. Blue
color density indicates rank based on probability of finding at least one FTP within 1.1km
of the marked location.

the count of identified FTP to their nearest marked location (again, see523

Figure 6) allowed us to compute the correlation between estimated FTP524

potential and count of actual FTP identified. The resulting Spearman’s525

correlation was 0.233 (p < 0.01), a small but positive correlation indicating526

that the magnitude of the residuals, not just the binary threshold, have a527

role to play in FTP identification. It should be noted that a 1.1 km cell528

radius is quite a large distance to explore and while quite a few new FTP529

were identified, it is likely that other FTP may existed in the area but were530

not identified.531

The identification of these previously unidentified FTP offers validation to532

the RDF machine learning approach suggested in this research, and addresses533

RQ3. This approach presents a data-driven based method for uncovering534

previously unidentified FTP locations and has the potential to significantly535

reduces the on-the-ground efforts of individuals that previously relied on536
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qualitative assessment and brute force search methods.537

6.2. Applicability to neighboring countries538

In order to test the limits of our RDF prediction approach, the best-fit539

regression model constructed from numerous datasets in Kenya was applied540

to datasets collected in the neighboring country of Uganda. The countries541

of Kenya and Uganda, while similar in many ways, also differ substantially.542

We are currently in the process of collecting further on-the-ground data to543

test the transferability of this model to the neighboring country of Uganda.544

In the mean time, our naive approach was again to rely on the same545

publicly available datasets and use the best-fit model from the Kenya data546

to predict locations and number of FTP in Uganda. Figure 7 graphs the547

precision versus recall for three data categories independently as well as the548

combined RDF regression model. Not surprisingly, the RDF model trained549

on Kenya data produces poorer results in Uganda than Kenya. The F-scores550

for the three data categories of SM , V GI and AUTH are 0.43, 0.44 and551

0.36 respectively with a combined F-score of 0.44. The best Spearman’s552

correlation value was 0.69 for the combined model with a RMSE of 6.08E-553

03. In fact, just using OpenStreetMap POI data produced accuracy values554

(F-score, Correlation and RMSE) similar to the combined RDF model built555

from Kenya data.556

There are numerous reasons for the drop in accuracy scores compared557

to Kenya. The most obvious answer is that these are different countries558

with unique economic, information & communications technologies (ICT),559

and socio-demographic properties. It is naive to assume that a model built560

on data from one country could be applied to a completely different country561

without a loss of accuracy. Second, the FTP location data were collected562

and reported by a different provider in Uganda than in Kenya (Humanitarian563

OpenStreetMap vs. Brand Fusion). There are likely differences in the data564

collection techniques, number of people involved and technology employed.565

Future work will explore these differences with the purpose of identifying key566

ways in which a model can be altered to account for regional differences.567
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Figure 7: Precision vs. recall for Uganda RDF Predictions.

7. Mobile Application568

One of the outcomes of this research, and the focus of RQ4, is an Android-569

based mobile application for identifying, creating, editing and deleting finan-570

cial touch points within sub-Saharan Africa. The current prototype appli-571

cation functions both with and without a stable Internet connection and572

currently focuses on Kenya.573

7.1. Prediction overlay574

Based on the best-fit RDF prediction model developed in Section 4.2.4,575

a raster layer containing FTP location predictions was constructed at a res-576

olution of 0.02 degrees. This raster layer was styled on a white to green577

color ramp using natural break classification and tiled to allow efficient data578

transfer and visualization on the mobile mapping application (Figure 8a).579
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(a) Prediction Layer (b) Known FTP (c) Editing interface

Figure 8: The FTP mobile prediction and capture application.

7.2. Financial touch point locations580

Upon loading, the mobile application prompts the user to download581

known FTP locations for one or more of Kenya’s 70 districts. The purpose582

of this is to allow a user to download only the data required, thus reducing583

data usage and device storage. Before leaving an area of stable connectivity,584

the user will download the known FTP locations for the district(s) in which585

they will be traveling.586

Users are invited to zoom and pan the map as they would on any standard587

mobile mapping application (Figure 8c). The FTP locations are shown as588

point markers on the map and clustered depending on zoom scale. When589

the user selects a marker on the map, they are presented with the Details590

interface. This interface shows information collected about the FTP by the591

original party. The user can choose to edit this information (Figure 8b)592

or delete the FTP entirely. Finally, the user has the option of zooming593

into their current location on the map, either through panning/zooming or594

selecting the locate me button. Once the map is at a reasonable scale, the595

user can tap the map to add a new FTP. In this case, the unpopulated Edit596

interface is presented to the user. Once the user is finished editing, adding597
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and deleting FTP, they have the option (selection from the context menu)598

to upload the changes to the database. Again, this allows for offline editing599

and reduces overhead of constant communication with the server whenever a600

FTP is edited. The application is currently in use by data collection teams601

in Kenya.602

8. Conclusions & Future Work603

In this work we present a novel approach to identifying financial touch604

points in Kenya through combined use of geosocial media data, volunteered605

geographic information, and authoritative geospatial datasets (RQ1 andRQ2).606

We showed that we can significantly increase the ability to identify FTP lo-607

cations by including both spatial and platially tagged social media posts in608

our analysis. Current state-of-the-art machine learning techniques were com-609

pared to existing ordinary least squares and spatial regression models and it610

was shown that a random decision forest model using combined data from all611

three sources best identified existing financial touch points and can be used612

to identify the location of previously unknown FTP (RQ3). With this goal613

in mind, we developed a mobile application for on-the-ground data collec-614

tion that uses the results of the RDF model as a geospatial estimation layer615

through which users are be better informed on where to locate FTP (RQ4).616

The application is currently in use in Kenya and has aided in the identi-617

fication of previously unknown financial touch points. Data collection done618

using this application (with the inclusion of the prediction layer) has the po-619

tential to substantially impact financial services in countries such as Kenya620

and Uganda. Provided detailed maps of access to financial services in sub-621

Saharan Africa, local government and international agencies are better in-622

formed when formulating policies and regulating financial services. The goal623

of this work is to facilitate this discussion by providing access to the most624

up-to-date geospatial data.625

This analysis does come with some limitations. Given the country-level626

analysis that was executed, a trade off was made when determining the cell627

size for analysis. Increasing or decreasing this cell size would understandably628

impact the accuracy of the identification model. Access to known FTP loca-629

tions is another limiting aspect of this type of analysis. Two different data630

sets were collected from two different organizations in two different coun-631

tries. The methods of data collection varied and there is likely bias in how632

the data was collected (e.g, accessibility of roads, daylight restrictions,etc.).633
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While these biases potentially impacted the final results of the analysis, they634

had little influence on the methods of analysis that were employed. A lim-635

itation of the validation approach lies in the lack of collected information636

related to true and false FTP negatives. Data collection teams in Kenya did637

not report on the lack of FTP in regions that were identified as not having638

FTP as it was not their primary mandate. Future data collection campaigns639

will aim to collect these data.640

Future work in this area will continue to focus on refining the identifica-641

tion model through inclusion of additional datasets, updating known FTP642

locations, and feedback from on-the-ground data collection efforts. Though643

this work is primarily focused on leveraging the relationship between exter-644

nal datasets and FTP, the role of nearby FTP within a known touch point645

dataset could potentially have an impact on the identification of new FTP as646

well. Additionally, we are in the midst of assessing the accuracy of our exist-647

ing model and refining new models based on data from neighboring countries648

in the region. Further examination of neighboring country-specific datasets649

will lead to a better understanding of the impact that socio-economics, de-650

mographics, ICT adoption, etc. have on the ability to successfully identify651

FTP locations at a broader scale.652
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