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Abstract

The volume, velocity, and variety at which data are now becoming available
allow us to study urban environments based on human behavior at a spatial, tem-
poral, and thematic granularity that was not achievable until now. Such data-driven
approaches opens up additional, complementary perspectives on how urban sys-
tems function, especially if they are based on User-Generated Content (UGC).
While the data sources, e.g., social media, introduce specific biases, they also open
up new possibilities for scientists and the broader public. For instance, they provide
answers to questions that previously could only be addressed by complex simula-
tions or extensive human participant surveys. Unfortunately, many of the required
datasets are locked in data silos that are only accessible via restricted APIs. Even if
these data could be fully accessed, their naı̈ve processing and visualization would
surpass the abilities of modern computer architectures. Finally, the established
place schemata used to study urban spaces differ substantially from UGC-based
Point of Interest (POI) schemata. In this work, we present a multi-granular, data-
driven, and theory-informed approach that addressed the key issues outlined above
by introducing the theoretical and technical framework to interactively explore the
pulse of a city based on social media.

1 Introduction and Motivation
Today’s data universe offers access to a plethora of data at a spatial, temporal, and
thematic resolution unthinkable just a few years ago. This data revolution is accom-
panied by the emerging 4th paradigm of science [8, 6] in which synthesis is the new
analysis. Those changed realities cast off visions of information observatories [18]
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(a) Screenshot from Foursquare video (b) POI Pulse interactive visualization

Figure 1: The pre-generated video (a) and the interactive POI Pulse system (b).

in which complex systems, such as urban spaces1, could be observed and better un-
derstood based on exploiting the variety, volume, and velocity of Big Data [12, 11].
Those, however, who tried to explore these new possibilities often encountered equally
big challenges. First, major parts of Big Data still reside in closed proprietary silos with
limited API access. Second, the metadata, e.g., provenance, and conceptual schemata
required for any serious use by scholars are often not present, intransparent, or differ
substantially to those established in science. Finally, the sheer volume and velocity
makes interacting with or even just visualizing the data difficult to say the least.

For many of us, an information observatory for urban spaces in which user-
generated real-time content reveals spatial, temporal, and thematic patterns and traits of
human behavior, is a tempting idea as it aligns well with the Digital Earth vision. Con-
sequently, a posting2 on Foursquare’s infographics blog in October 2013 raised a lot
of attention. It linked to a series of videos showing the pulse of different cities such as
San Francisco. The animations were entirely derived from mining massive amounts of
user check-ins to the Foursquare Location-based Social Network and were aggregated
to a single virtual day; see Figure 1a.

While the visualization itself is quite stunning, the Foursquare videos have several
shortcomings: (I) The videos are not interactive, e.g., one cannot click at any of check-
in events or places to gain additional insights.3 (II) The videos are rendered based
on a fixed geographic scale and focused on a particular part of the city. Thus, one
cannot pan or zoom. (III) The millions of check-ins are aggregated to a single non-
specific day, thus hiding well known patterns, e.g., weekdays versus weekends. (IV)
Foursquare’s POI taxonomy consists of more than 400 POI types grouped into 9 top-
level classes (see Figure 1a). While such generalized classes are necessary and useful,
it is not clear how they were derived nor why certain POI types are categorized in
specific ways. Furthermore, a binary class membership on such a coarse level will

1See http://www.urbanobservatory.org/compare/index.html for an early example.
2https://foursquare.com/infographics/pulse
3Interested readers may try to find an explanation for the moving fast Food cluster in San Francisco at

4am; see https://foursquare.com/infographics/pulse#san-francisco.
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necessarily introduce arbitrary decisions and thus will significantly alter the observed
temporal pulse of the city. For instance, Cemeteries are categorized under the Great
Outdoors category. (V) Similar to other UGC, Foursquare contains data of widely
varying quality. For instance, users often classify their own houses as Castle or check-
in to features of types Road, Trail, or Taxi. While this is a consequence of UGC, it is
important that the data be cleaned.

Inspired by Foursquare’s pulse videos and the theoretical and technical limitations
of interacting and visualizing Big Data, we decided to address the aforementioned
restrictions by designing a POI Pulse portal for Los Angeles;4 see Figure 1b. Naturally,
as scientists we are more interested in those theoretical and technical aspects than the
application as such, but we will use it as the joint leitmotiv that connects the following
research questions which make up the scientific contribution of this work:

R1: Given the >400 POI type defined by Foursquare users, is it possible to de-
rive an alternative top-level classification that is informed by existing and well estab-
lished POI schemata (e.g., defined by Ordnance Survey) and still true to the original
Foursquare data and user-behavior?

R2: Most likely, the reason for showing a pre-rendered video is the fact that even
the most modern Web bowser using HTML5, CSS3, and effective JavaScript engines,
cannot render the hundreds of thousands of POI as vectors thus making interaction
cumbersome. Is it possible to use a scale-dependent, seamless combination of raster
and vector tiles to render approximately 200,000 POI for Los Angeles, and still make
the interface interactive and responsive? What is the tipping point from which vector
tiles will be faster than raster tiles?

R3: Given the legal API limits of closed data silos such as Foursquare, can we gen-
eralize check-ins, individual POI, and their attributes, e.g., tips, to a type-level default
behavior that allows us to model the pulse of a city with minimal data requirement? Is
it possible to seamlessly switch to a real-time, burst mode at zoom scales that do not
exceed the daily API limits and thus also give access to real time data?

R4: Can we improve on the Foursquare baseline by offering a pulse for all hours
of the full week instead of a single day? Can we show binary upper-level categories
but seamlessly switch to a more nuanced view at a reduced zoom level to show a
probabilistic category membership?

In the following, we present a multi-granular, data-driven, and theory-informed5

approach that addresses these research questions by introducing the theoretical and
technical framework to interactively explore the pulse of a city based on social media.

2 A Data-Driven and Theory-Informed POI Taxonomy
In this section, we discuss how to derive a POI taxonomy by combining data-driven
techniques with existing top-down classification schema. Many different POI vo-
cabularies, taxonomies, and schemata have been defined in the past few years, e.g.,
schema.org, the Ordnance Survey POI classification system, the OpenStreetMap map
features, OpenCyc, the Linked Geo Data ontology, the GeoNames ontology, or even

4Explore the portal at http://www.poipulse.com
5I.e., including existing top-down schemata from the research literature and industry.
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WordNet, to name a few. Unfortunately, most of these are not suitable for our purpose.
Sources such as WordNet are not specific enough, while platforms, such as OpenCyc,
introduce distinctions (e.g., man-made structure) that are interesting from an ontolog-
ical perspective but hinder the task at hand. OpenStreetMap is notorious for its flat
key-value pair classification and also introduces many feature types that are not POI
specific. Similarly, the GeoNames feature classes are not suitable, since all POI types
defined in Foursquare would end up in the same class (S spot, building, farm). Conse-
quently, after an initial review, we decided to use schema.org.

Schema.org is a data markup ontology jointly constructed by Google, Yahoo, Mi-
crosoft, Yandex, and the W3C. Intuitively, one would assume that such an ontology is
most suitable to provide an upper-level abstraction for the >400 Foursquare types and
should be able to replace the 9 top-level classes. One may also expect that schema.org
was developed with datasets such as Foursquare, Yelp, etc, in mind. Surprisingly, how-
ever, that turned out not to be the case. For instance, schema.org distinguishes between
Places and Organization as one of its top-level distinctions. While this is not wrong,
the fact that Internet cafes are considered organizations but movie theaters are places is
surprising.6 Due to many similar cases and ontological decisions taken by schema.org,
it became clear that we needed another classification.

Eventually, we selected the Ordnance Survey (OS) POI classification system (v.
2.3) [16]. In contrast to Web and data-driven resources, the OS classification is an
administrative and UK-specific resource. The OS system consists of 9 classes at the
1st level, 49 classes at the 2nd level, and 600 POI types at the 3rd level. We are only
interested in the first level here (OS1). It consists of the following classes: 01 Ac-
commodation, eating and drinking, 02 Commercial Services, 03 Attractions, 04 Sport
and entertainment, 05 Education and health, 06 Public infrastructure, 07 Manufac-
turing and production, 09 Retail, and 10 Transport. We will use this classification as
our top-down, theory-informed POI schema and in the following section describe how
to use data-driven techniques to semi-automatically align the Foursquare types to this
schema.7

2.1 Multi-dimensional Characterization of POI Types
The variety of big data presents new possibilities to understand POI from different per-
spectives. In previous work, we proposed the concept of semantic signatures to char-
acterize a place using spatial, temporal, and thematic patterns [9]. As an analogy to
spectral signatures in remote sensing, semantic signatures differentiate types of places
based on multiple bands. In this work, we employ the semantic signatures idea, and ex-
tract a number of descriptive dimensions from the Foursquare data to characterize POI.

6Via: Thing >Organization >LocalBusiness >InternetCafe (see http://schema.org/
InternetCafe) and Thing >Place >CivicStructure >MovieTheater (see http://schema.
org/MovieTheater).

7To improve readability, we will refer to the Foursquare classes as POI types and to the OS1 classes as
upper-level classes.
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2.1.1 Temporal Bands

The temporal bands are derived from 3,640,893 check-ins to 938,031 venues from 421
Foursquare categories in Los Angeles, New York City, Chicago, and New Orleans.
These check-ins have been collected for 4 months starting October 1st, 2013. Con-
sequently, we cannot use them to understand seasonal effects but focus on the 168
hours of the week. The temporal resolution of the data is 2 hours, i.e., while we have
hourly check-in times, the duration of check-ins is unknown and users are automati-
cally checked out after 2 hours. In our work, we are neither interested in the particular
venues, check-ins, nor users,8 but in studying the temporal default behavior of users
towards types of POI. In other words, we are interested in the fact that bars are visited
in the evenings and especially during weekends, while universities are mostly visited
during the workdays between 7am-5pm. Figure 2, depicts 168 bands that jointly form
the temporal signature for three POI types. The data represents probability values for
check-ins to the given type (by hour bins), i.e., the 168 bands sum up to 1. Despite
the large sample, we had to remove outliers as some of the POI types, e.g., Molecular
Gastronomy Restaurant, have fewer venues than others. We used 4 standard deviations
from the mean as cutoff. While we have not used these temporal bands before, we
applied a coarser and more limited temporal signature to predict types for untagged
POI successful [19]. Thus, we expect the temporal bands to play a major role in the
derivation of the POI taxonomy.

Figure 2: The weekly temporal bands for selected POI types by hour.

2.1.2 Thematic Bands

A representative subset of the venues (274,404) from the 421 Foursquare categories
(POI types) have been used to derive another, yet very different set of bands that
will jointly form the thematic signature; cf. [17]. We collected all user-contributed
tips for those venues, stemmed all words, generated venue specific documents out of
them, grouped these documents by POI type, and then used Latent Dirichlet Alloca-
tion (LDA) [1]9 to extract topics. LDA is an unsupervised, generative probabilistic
model used to infer latent topics in a textual corpus. We trained LDA by treating the
tips associated with all venues of a given type as single documents. LDA uses a bag-
of-words approach to uncover topics that are represented as multinomial distributions
over words. Each topic is composed of multiple words and their relative importance

8Even more, due to API restrictions these data should not be stored for more than 24 hours.
9Due to the API restrictions, we are only storing the derived latent topics per POI type.
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for this topic. Figure 3 uses word clouds to visualize the top 18 words in three topics by
scaling them according to their probability. It is important to note that each stemmed
word extracted from the tips appears in each topic with a different probability. LDA
topics do not necessarily correspond to themes typically formed by humans.

(a) Topic 39 (b) Topic 26 (c) Topic 53

Figure 3: Words that make up LDA topics scaled by their relative probability.

Topic 53, for example, is interesting as it prominently contains Spanish terms, while
topic 26 is related to terms about markets, flowers, plants, etc. We are not interested in
the specific terms but only their indicativeness, i.e., how diagnostic they are in predict-
ing the type of place. For instance, topic 53 is more likely to appear in relation to POI
types such as Mexican Restaurant than within tips contributed to Yoga Studios.

2.1.3 Spatial Bands

The spatial distribution patterns of POI types in urban areas differ. To achieve a more
holistic signature of the POI, we also introduce 14 spatial bands. The first set of bands is
derived from the average of nearest-neighbor distances (ANND) among all POI typeS.
The values have been normalized to [0-1] such that the larger value indicates dispersion
while the smaller value represents clustering. The next set of bands are derived from
Ripley’s K which offers the potential for detecting both different types and scales of
spatial patterns. The K measure computes the average number of neighboring venues
(of the same type) associated with each POI within a given distance and then compares
them to the expected value under completely spatial randomness. We chose 10 dis-
tance thresholds and calculated the corresponding Ripley’s K measures as 10 spatial
bands for all POI types. Figure 4 shows that the K measure helps to evaluate how the
spatial clustering or dispersion pattern of each POI type changes when the neighbor-
hood distance changes. For instance, The values of ANND Police Station (0.721) and
Night Club (0.702) are very close, while their spatial clustering patterns are different at
multi-distance bands (scales). Both ANND and Ripley’s K measures only consider the
distance or the number of neighboring venues but ignore the POI type information for
spatial point pattern analysis. In urban areas many POI types (such as nightclubs and
bars) often clustered together. The different types of spatial mixture patterns should
also be taken in to consideration. To address this issue, we introduce a third family
of bands called the J Measure. The J Measure involves generating triangles between
all POI of the same type, counting the number of other distinct POI types within each
triangle and dividing it by the total number of POI types. We computed the mean,
median, and standard deviations for the J Measure for all POI types. For instance, the
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Figure 4: Ripley’s K for 10 types (The y-axis value represents the difference between the ob-
served value of K-measure at a given distance and the expected value under the CSR simulation
process.)

mean J Measure for Police Station (0.257) is larger than that of Night Club (0.176),
which indicates a larger POI type diversity between adjacent police stations.

2.2 Data Cleaning
As a next step we cleaned the dataset by removing all POI types that either refer to
clearly linear features or were overly generic. Examples include types such as Road
and Trail, and non-descriptive types such as Building or City. We also removed types
that are a pure artifact of UGC and that we know have no instances in the Greater Los
Angeles, e.g., Volcano. Similarly, we removed the type Castle, assuming that the 77
POI within the dataset are from user’s that took the “my home is my castle” motto too
literally. Finally, we removed clearly non-stationary POI such as Plane and Taxi, while
leaving the Food Truck type in the dataset. This reduced the number of Foursquare POI
types from 421 to 387 and the LA POI dataset from 178,814 POI to 164,902.10

2.3 Information Gain
Given the 246 different bands that jointly form our semantic signatures, it is interest-
ing to discover which of these bands are most diagnostic in terms of their ability to
estimate the membership of a particular POI type with respect to an upper-level class.
This is for two reasons: First, it allows us to reduce the high-dimensional space by
excluding dimensions/features that do not contribute (much) to the classification; Sec-
ond, it provides intuition about the expected bias, and, thus, the limits of data-driven
classification. For instance, if most of the thematic bands were not diagnostic, it would
be difficult to tell apart the Airport type from the Emergency Room type as the two
share similar temporal signature, i.e., people visit them during all hours and days of

10Our original dataset contained 191,998 POI but this included uncategorized POI as well.
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the week. Hence, both types would more likely be classified as belonging to the same
class, e.g., Education and Health, while they should belong to two distinct classes
namely Transport and Education and Health.

Information gain is a measure of the expected decrease in entropy [15]. It pro-
vides an assessment of the contribution of a particular feature (i.e., a specific band)
for predicting the dependent variable, i.e., the upper-level class. To compute the in-
formation gain of the 246 bands, we jointly agreed on a set of POI types considered
as clear matches for the respective OS1 classes. For instance, German Restaurant was
manually classified as being a subtype of Accommodation, Eating and Drinking. Next,
the information gain for all (discretized) bands was computed using this training set
and the median and arithmetic mean scores were determined. Assuming that simpler
models can better capture the underlying structures [15], all bands with information
gains scores below the mean were removed, leaving 159 bands that were considered
diagnostic.

Band Information Gain Band Information Gain
temp143 0.772 temp161 0.695
temp59 0.750 temp88 0.693

temp107 0.744 theme39 0.519
temp60 0.725 spatial4 0.234

temp35 0.712 temp29 0.034

Table 1: The 7 overall most diagnostic bands according to their information gain, the
most diagnostic thematic and spatial bands, and the least diagnostic band.

Table 1 shows some results. It is interesting to note that all top bands are tem-
poral. In fact, the first non-temporal band (theme39) is ranked 56th. This thematic
band is graphically represented in Figure 3a. The first spatial bands (spatial4) is
ranked 134th. Examining the top temporal bands shows that the typical lunchtime
hours (11am-12pm), close of business hours (4-5pm), and dinner/nightlife hours (10-
11pm) are most relevant, as is the distinction between workdays and weekends. Band
temp143, for instance, corresponds to Friday 11pm while the least diagnostic band
(temp29) corresponds to Monday 5am. Consequently, while all 159 bands will con-
tribute to the classification, we can expect the classifier to have more difficulties in
learning the membership for classes such as Public Infrastructure that consist of POI
types with widely varying temporal bands, e.g., Police Station versus City Hall. This
will result in lower precision and recall values for such upper-level classes and will
be discussed in the following sections. One could, of course, consider and extract ad-
ditional bands. However, this is out of scope for the paper at hand and significantly
restricted by the availability of attribute data from typical POI data sources.

2.4 Interactive Classification
The creation of bands and their reduction via information gain sets the stage for classi-
fying the POI types from Foursquare using the Ordnance Survey level 1 classes. To do
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so we used a combination of machine learning and manual corrections in two different
runs.

First, we selected the previously generated training set of POI types and trained a
Support Vector Machine (SVM) [4] with a polynomial kernel. Next, we predicted the
OS1 classes of all POI types using the same training set. We check all cases where
the assigned and the predicted classes varied and decided manually which class to use.
Interesting examples where we changed our initial decision include Bagel Shop that
we initially classified as Retail which is rather a breakfast place (thus, Accommoda-
tion, eating and drinking) in the US. Similar cases included Brewery, Nail Salon, and
other POI type that could be categorized as belonging to different classes. Another
good example is all college buildings. For instance, should College Football Field be
categorized as Education and Health, Sports and Entertainment, or Attractions? From
the point of view of a social check-in application such as Foursquare, the number of
users that view a football field as an attraction is orders of magnitude above the actual
players (for which the football fields should belong to the sports class). We will address
this multi-class nature of many POI types from a visual perspective in section 4.

Finally, we trained the SVM with the new training set and subsequently with all
POI types. We computed the recall and precision for this run and manually inspected all
mismatching class predictions. This led to some interesting findings about the bias in
the Foursquare data, its crowd-sourcing nature in contrast to the administrative OS level
1 classes, as well as socio-political differences between the US-based type data and the
UK-based schema. For instance, according to the OS classification Recycling Facility
should be categorized as Public Infrastructure while they are Commercial Services in
the US. Other interesting cases included Public Art that SVM successfully categorized
as Attraction, or Tailor Shop that was predicted to belong to Retail (but could also have
been a Commercial Service).

Target Class F1 Precision Recall
Accommodation, eating and drinking 0.8343 0.869 0.8022
Attractions 0.6479 0.561 0.7667
Commercial Services 0.5882 0.6667 0.5263
Education and health 0.7792 0.7692 0.7895
Entertainment and Nightlife 0.8235 1 0.7
Public Infrastructure and Community 0.5946 0.6471 0.55
Retail 0.8611 0.8267 0.8986
Sports and Recreation 0.7568 0.6774 0.8571
Transport 0.6957 0.7273 0.6667

Table 2: F-score, Precision, and Recall for upper-level classes after the 2nd run.

After inspecting the predicted class membership probabilities for each single type,
we realized that based on the nature of the Foursquare POI types as well as the pre-
viously mentioned bias in our 159 most diagnostic bands, we would need to change
some of the OS level 1 classes. We decided to remove the Manufacturing and produc-
tion class as it only has three subtypes in our dataset, renamed Public infrastructure to
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Public Infrastructure and Community to also include religious places, and finally split
Sport and entertainment into two distinct classes: Sport and Recreation as well as En-
tertainment and Nightlife. As the temporal bands were found to be the most diagnostic
features in our dataset and as we want to show the pulse of a city by hours and days, a
joint class for POI types such as Basketball stadium, Martial Arts Dojo, and Strip Club
was not feasible.

Target Class A.E.D. Attr. Comm. Edu. Entert. Public Retail Sports Trans. #

Accommodation, Eat,
Drink 73 6 0 1 0 0 6 5 0 91

Attractions 0 23 0 0 0 0 4 3 0 30

Comm. Services 0 4 20 5 0 3 1 2 3 38

Education, Health 0 0 3 30 0 3 0 2 0 38

Entertainment, Nightlife 10 0 0 1 28 0 0 1 0 40

Public Infrastructure, Community 0 2 1 1 0 11 1 4 0 20

Retail 0 3 1 0 0 0 62 3 0 69

Sports, Recreation 1 1 3 1 0 0 1 42 0 49

Transport 0 2 2 0 0 0 0 0 8 12

# 84 41 30 39 28 17 75 62 11 387

Table 3: Confusion Matrix after final class predictions.

The second run consisted of a new training set based on the new upper-level classes
and the lessons learned from the first run. We trained a SVM and predicted class
membership for the training set as well as all other POI. The F-score, precision, and
recall for this 2nd run are listed in Table 2. While the results for the new Entertainment
and Nightlife class or the OS1 class Accommodation, eating and drinking are very
high, other classes are more difficult to predict. This is largely due to the heterogeneity
within such classes as well as the fact that some POI types cannot be distinguished
based on the temporal, thematic, and spatial signatures. The class Public Infrastructure
and Community offers good examples of this, and thus, has a relatively low F-score.
The class includes POI types such as Police Station, City Hall, and Mosque, that vary
substantially with respect to all bands. Finally, some POI types would require very
different bands for their successful classification, e.g., sentiment analysis could be used
to better distinguish police from fire stations. Table 3 shows a confusion matrix to give
an overview of the varying classification success.

Figure 5 shows a fragment of a Multi-Dimensional Scaling plot. Each node corre-
sponds to a types, while colors indicate class membership. The lines represent the top
20 % most similar pairs, while the node sizes indicate Kruskal stress. Classes such as
Accommodation, eating and drinking (blue) and Entertainment and Nightlife (yellow)
form densely connected clusters while other classes, e.g., Public Infrastructure and
Community (pink) are less coherent. This essentially confirms our findings visually.

Summing up, we derived a new upper-level classification schema based on an ex-
isting top-down schema as well as a data-driven way in which we let the data speak for
itself to inform (and in most cases decide on) our final classification.
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Figure 5: Fragment of a Multi-Dimensional Scaling plot showing the uper-level classes
as colors; Kruskal stress: 0.258.

3 Interaction and Visualization – Rasters vs. Vectors
Once the upper-level classes were established and the POI types were successfully
classified, the focus shifted to the challenge of visually rendering the over 170,000
individual POI. One of the primary issues that continues to plague web mapping and
cartography, is the speed at which data can be displayed. Recent advances in browser
technology have allowed for dramatic changes in the way data can be processed and
visualized. From a web mapping perspective, this increased reliance on browsers al-
lows for improved interaction with data, reducing the need for continual client-server
requests. Given the large amount of data and interactivity needs of this project, opti-
mization of the web mapping component is essential. This section presents an efficient
method for visualizing this big geosocial data.

Since a true city pulse requires equal contribution from all POI, an early decision
was made not to cluster or reduce the POI when constructing the visualization. This
created a challenge in determining an efficient means for visualizing approximately
170,000 points through a web browser. The state-of-the-art for many years has been to
serve a collection of static image tiles pre-rendered by a mapping toolkit. The structure
of these tiles typically follows a simple coordinate system. Each tiles has a Z (map
scale) coordinate and an X and Y coordinate that describe its position within a square
grid. For every Z-level increase, the number of tiles required increases by a factor
of four, leading to extremely large tilecaches, depending on the number of zoom levels
and extent of the area of interest. For reasons of practicality, most mapping applications
restrict the number of tiled zoom levels to 20. Zoom level 0 represents the entire world
in a single tile while level 19 projects the Earth at a map scale of 1:1,000. The power
of the image tiling scheme is that the size of the image file transmitted to the client is
minimally influenced by the size of the data.

Recent W3C standards, such as HTML511 and Scalable Vector Graphics (SVG)12,
combined with powerful modern web browsers continue to push the boundaries of

11http://www.w3.org/TR/html5/
12http://www.w3.org/TR/SVG11/
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what can be done in web cartography. While image tiles allow cartographers to solely
display content via the web, Vector Tiles offer users the enhanced ability to interact
directly with the content. Vector tiles take a similar approach as image tiles in that
they divide data in to smaller sizes in order to enable faster loading times leveraging
modern browser parallelization and asynchronous data requests. Unfortunately, the
enhancement of offering direct data interaction also increases the burden on the client
side as data rendering is now being executed locally. Thus, the goal is to find the
tipping point at which a web mapping framework should switch between raster and
vector tiles.

3.1 The Tipping Point
Ideally, vector tile representations of POI should be displayed at all map scales allowing
for maximum interaction with the data. An experiment was run on three different
networks in which both Vector and Raster representations of the POI dataset were
loaded. Each tile format was loaded 200 times at each of the zoom levels between
10 and 16. The loading times (in milliseconds) were recorded and averaged and the
results are shown in Figure 6. As one can see, the loading time required to display
all POI (Zoom level 10) in vector format is simply not practical. With each increase
in zoom level, the transfer/rendering time for the vector tiles decreases. Only those
tiles that intersect with the view-port are transferred to the browser and rendered. This
means that fewer and fewer points are displayed, reducing the amount of data to be
transmit and rendered.
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Figure 6: Raster vs. Vector tile loading times (in ms).

Comparatively, the loading times for image tiles (PNG-8) increase between zoom
levels 10 and 12 and steadily decrease thereafter. This initial increase can be explained
by the number of rendered tiles. If a given view-port requires 32 tiles to cover the
entire map display, for example, only 10 of these tiles will contain data at zoom level
10. This means that 22 tiles need not be transferred from the server or rendered by the

12



client. As zoom levels approach 12, the number of tiles that render content increases
until all 32 visible tiles contain some amount of POI. The reduction in loading times
between zoom levels 12 and 16 can then be explained by the amount of data rendered in
each PNG. As the map scale increases, the total number of POI visible in the view-port
decreases, indicating that the average number of POI rendered in each PNG approaches
zero.

Given the significant disparity in loading times, the POI can clearly not be rendered
solely in vector format. With the purpose of reducing loading time and maximizing
user-data interaction, the switch in tile formats should occur between zoom levels 12
and 13. While loading time is a key contributor to this decision, the total number of
POI is also relevant. Interacting with POI data at a map scale smaller than 1:70,000 is
simply not possible as the ability to select an individual POI at this scale is arduous.

3.2 Technology
Adopting this idea of switching between vector and raster representation, the POI Pulse
application is implemented. This platform is built using a novel combination of web
technologies. Based in HTML5 and Javascript, the Leaflet v0.7 Javascript framework
is employed for map display and interaction. The Data-Driven Documents (D3)[3]
v3.4 library is used for manipulating and rendering data in Scalable Vector Graphics
format through Javascript. On the back-end, TileStache v1.49 extracts the data from a
PostGreSQL 9.2/PostGIS 2.0 spatially enable database, and organizes the POI in the
file structure required by Leaflet. TileMill and CartoCSS are employed for cartographic
styling exported as XML. MapNik v2.2 reads these style documents and renders im-
age tiles while TopoJSON [2] v1.4.2 vector tiles are generated through TileStache and
rendered on-the-fly with D3 and cascading style sheets (CSS). On page load, the map
shows all POI in white with an opacity value used to indicate popularity for each hour
of the week. For zoom levels 11 and 12, diverging colors, selected through the Color-
Brewer application [7], were assigned to the ten upper-level classes. In order to allow
visibility control for each class, ten separate image tile caches were created.

Respectively, vector tiles are not pre-rendered and thus do not require numerous
tile caches. Since vector tiles contain the raw geographic location and attributes, these
data can be rendered on the client. Toggling the visibility of classes within the vector
tiles is handled by iterating through the vectors and changing the visibility parameter
for the appropriate SVG element. Restricting the zoom levels at which these tiles
are rendered means that a limited number of POI require real-time rendering, but this
feature requires the generation of a large number of vector tiles. Remember that the
number of tiles required at each zoom level increases by a factor of four as the zoom
level increases. Excluding empty tiles, this means that level 13 requires 704 vector tiles
while level 14 requires 2,666.

3.3 Pre-loading Map Tiles
Once the image and vector tiles have been generated, implementing them in the user
experience becomes the next challenge. The temporal nature of these data require that
a new set of tiles be displayed to the viewer with each click of the hour-advancement
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button; see Figure 1b. Regardless of number of tiles or tile size, the process of adding
tiles to the map always takes the web mapping framework a split second to organize
the tiles and display them. The most common technique in viewing time series data is
to procedurally remove one set of tiles from the map and add another set. In theory,
this makes sense, but in practice, this process produces a moment where neither the
previous tiles nor the new tiles are visible on the map. This creates what psychologists
refer to as a mask between experiment tasks, removing any link between the previous
image and the next. Unfortunately this has a negative impact on the application’s user
experience. Since the changes in activity are quite small from one hour to the next,
this masking effect overpowers the visual effect of the minute changes necessary to
understand the urban pulse. In order to circumvent this issue, we pre-render tiles on
the client and set the opacity value of zero. Initially an array of four hours of data
are loaded on to the map with only the first hour being visible. As the user clicks
the button to advance through time, the appropriate tiles are made visible while the
previous hour’s tiles are removed from the map. The process of changing the visibility
of layer is computationally minimal compared to the task of adding the tiles. When the
number of map tile layers proceeding the currently visible layer reaches two, the next
four hours of tiles are invisibly added to the map. This process ensures that a seamless
flow of visual information is presented to the user.

4 Default Behavior vs. Real-time Bursts
This section presents two contrasting views of the POI-driven city pulse. First, the
default behavior view aims at representing the constant and steady changes in activities
conducted in the city. Temporally, the city goes through changes in activity dominance.
This implies that specific activities, and the POI (types) at which these activities take
place vary in intensity through out the day/week. This leads one to describe Coffee
Shops as being mostly visited during the morning while Nightclubs are most active at
night. This, we termed the Foursquare population’s Default Behavior (towards POI).13

While humans are often described as creatures of habit (and the temporal bands
support this), on an individual level, our behavior is often quite spontaneous and unpre-
dictable. Analysis and visualization of these phenomena cannot be explored by looking
at the POI ecosystem as a whole, but rather at a large scale or neighborhood level. It
is virtually impossible to look at an overview of a city and attempt to understand the
individual activities and behaviors of every inhabitant. Existing research by Cranshaw
et al. [5], explored this phenomena of UGC-driven neighborhoods previously, but in a
very different way. The authors show that a city can be split into subregions based on
the social media contents generated by its residents. Our work takes a very different ap-
proach looking at real-time information presented in subregions rather than individual
neighborhoods. For this reason, the Social Burst View view was developed.

13We are well aware of the fact that Foursquare is a biased data sources and thus our POI Pulse is biased
(but this is not the focus of this paper).
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4.1 Default Behavior
From a systems architecture standpoint, the Default Behavior is accessible by zoom-
ing and panning through all map zoom levels. Visual exploration of default temporal
behavior and spatial patterns is also encouraged by panning through time (clicking the
Next Hour button) or jumping to a selected time (clicking the clock button and select-
ing from a drop down list of hours and days). This shows how the POI-driven urban
system changes over time. At the initial map scale, a single color value is used to rep-
resent all user-contributed POI in the Greater Los Angeles area. Advancing through
time while visualizing the POI in this way provides the user with a better understand-
ing of the flow of the city as a whole. This view is essential to understanding which
regions of the city are dynamic and the overall variability in activity level for the entire
region. Increasing the map scale by one zoom-level, the user is presented with new
upper-level classes. Again, panning through both space and time, the viewer gains a
better understanding of the distinction between classes. As the opacity value of each
POI marker changes, the user is made aware that the level of activity is changing both
between and within classes. For example, the class of Entertainment and Nightlife is
very prominent at 12am on Sunday while it is completely overshadowed by categories
such as Commercial Services on Monday at 9am.

Zooming in further, the data format switches from image to vector tiles. While
the color scheme, marker size, and opacity do not change between zoom levels, the
capabilities of the vector data format allow for much greater user interaction. Hovering
one’s mouse over any POI between zoom levels 13 and 16 results in the Foursqure
POI type name appearing beside the POI as well as a donut-pie chart surrounding the
marker. The donut-pie chart is a technique employed to visually explain the OS class
probabilities determined for each POI type in section 2.4 thus going beyond binary
classification.

The value of being able to interact with the map through mouse events, for example,
is that one can visually explore the probability distribution of classes for each individual
POI. The standard marker visualization forces each POI to be assigned a single color
representing a single class, but in actuality, the POI may exhibit high probabilities in
more than one class and the primary marker color could be ascertained by a very small
margin. When the user hovers over a POI, the donut-pie chart is displayed, demonstrat-
ing the multi-class characteristics of the venue. Each portion of the donut represents a
category that contributes to this venue, and the color of each portion reflects the class.
The size of each portion is defined by the percentage of this contribution based on the
learned SVM model.

Figure 7 shows mouse-over interaction with two different POI. The central marker
in Figure 7a is styled blue indicating that the primary OS class for this POI is Accom-
modation, Eating and Drinking. The accompanying donut-pie chart clearly shows that
the highest probable classification for this POI type is indeed Accommodation, Eat-
ing and Drinking followed by small fractions of Entertainment and Nightlife and so
forth. Comparatively, Figure 7b shows the prominent class for Water Park to be Sports
and Recreation which makes sense given that users of the geosocial application are
likely to visit a water park to engage in physical activities and recreation. The second
highest class, as shown by the donut-pie char is Attraction and it is the second highest
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(a) Chinese Restaurant (b) Water Park

Figure 7: Donut-pie charts showing OS category probabilities for two different POI.

probability by only a few percentage points. It is this ability to explore the discrepan-
cies between classes, to dig into the underlying data, that is the true power of such an
application.

4.2 Real-time Burst Mode
Understanding the pulse of a city involves not only looking at the city as a whole,
but exploring the individual subregions or neighborhoods. What are people talking
about in this part of the city? What places are popular right now? These are questions
that should be asked, not at a city-wides scale, but rather at a local scale where the
contents can be understood. Recent work by Purves et al. [14] explored this notion of
describing place based on data contributed to geosocial applications such as Flickr and
Geograph. In addition, the LIVE Singapore! project [10] allows individuals to access
a range of real-time information from a variety of sources as well as contribute back
to the system. While it does not include default temporal behavior as a foundation, it
does offer real-time access to an assortment of city sensors.

Microblogging applications such as Twitter offer users the ability to geo-tag
their content before publishing it. By accessing the streaming API,14 these tweets
can be added to the map immediately after they are published, providing the user
with (near) real-time information on what is happening in a certain region. Addi-
tionally, Foursquare provides current check-in counts for any venue in their dataset
through their rate-limited API.15 This information is valuable in that it shows the
true popularity of both Foursquare as a service, and the POI at which its users
choose to check-in. Clicking the Burst Mode button immediately changes the
temporal state of the map to the current hour of the day and week and begins
to show real-time tweets and check-in counts based on the map view-port.

4.2.1 Real-time tweets

The Twitter streaming API offers users the ability to filter public streaming tweets by
a specific geographic region. A listener service provides bounding box coordinates of

14https://dev.twitter.com/docs/streaming-apis
15https://developer.foursquare.com/docs
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Figure 8: Real-time Check-in counts for Santa Monica at 7pm on a Wednesday

the study area and all tweets geotagged within the region are inserted in to a PostGIS
database table. Individual tweets older than one minute are purged from the database
complying with Twitter’s terms of service.16 Though twitter claims to restrict all tweets
accessed through the filter streaming API to 1% of the real-time data, the influence of
adding a geographic filter is not fully known. The average rate of tweets over a 24 hour
period filtered to within the Greater Los Angeles area is approximately 113 per minute.

On the client/browser side, an asynchronous JavaScript (AJAX) request is made
every 1000ms to a server side handler. The JavaScript request provides the view-port
extent of the browser in geographic coordinates in order to restrict the returned tweets
to only those within the user’s view extent. In addition, only those tweets published
within the last 2 minutes are requested. Upon return, the tweets are added to the map
via a D3 vector layer which produces an animation that mimics water droplets (Figure
9). The animation lasts for 1000ms while another request is made to the server.

Given the shear number of tweets, it is not technically prudent nor cognitively
reasonable to display tweets on a small scale map. Recognizing this, users are given
the option to view live tweets only within specific regions. The factor that determines
the size and zoom scale of these regions is the number of POI within the view-port. A
threshold of 1000 POI inside a view-port is the value at which users are given the option
to view live tweets. Statistically, POI density is a good indication of neighborhood
popularity, as the original POI were generated through crowd-sourcing means. It is
important to note that this threshold is set independent of zoom level. As Figure 9
indicates, in some cases (Santa Monica Pier for example) the map scale will need to
be quite large in order to fit less than 1000 POI in a view-port. Alternatively, parts of
South-East Los Angeles reveal a lower POI density and therefore do not necessitate as
large a map scale in order to visualize tweets.

16https://dev.twitter.com/terms/api-terms
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Figure 9: Tweets in Santa Monica (red circles with semi-transparent white fill)

4.2.2 Real-time POI popularity

While live geotagged-tweets offer insight into region-specific themes, the real-time
geosocial popularity of POI in the region can also be determined. The Foursquare API
permits requests to specific venues in order to determine the number of Foursquare
users currently checked-in. Given API rate limits17, a 500 POI view-port restriction
ensures that any request made to a region returns only valid responses. From an system
architecture perspective, when a user clicks the Burst Mode button, an AJAX request
is made to the API which includes the geographic extent of the map view-port. The
response from this request is then returned to the browser and check-in count values
are added to the map for 500 POI, overlaid on top of the existing POI markers.

5 Conclusions and Future Work
Inspired by Foursquare’s city pulse videos, 5 major shortcomings were identified that
must be addressed to make the POI pulse useful from a scientific perspective and to
contribute to the vision of information observatories for urban systems. Based on those
shortcomings, we derived 4 theoretical and technical research questions that have to
be successfully addressed to implement an improved urban pulse. In this work we
addressed those questions by a combination of data-driven and theory-informed tech-
niques to arrive at a semantics signatures-based POI taxonomy. We investigated how
to seamlessly switch between multi-buffered image and vector tiles to implement a
responsive Web portal that can handle over 170,000 POI (thus actively pushing the
envelope of state of the art Web cartography). We studied the tipping point between
those cached image and vector tiles, and finally proposed a method to seamlessly switch
between a default mode of human behavior derived from empirical probabilities and
streaming real-time geosocial data. We implemented the POI Pulse system as showcase

17API limitations require that a user request data through OAuth. Requests are limited to 500 per hour.
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for our proposed solution.
In the future, we would like to add more services to the real-time burst mode. We

are especially interested in a combination of platial, e.g., current check-ins, and spatial,
e.g., Instagram pictures, data. As a proof-of-concept, we have discussed how to classify
the human-generated content POI types to an administrative POI classification schema
based on semantic signatures. However, we have only done so for level 1 and would
like to add the second OS level in the future. Additionally, integration of POI and
attribute data from alternative sources [13] would increase the variety and robustness
of the proposed classification model. We also plan to add more bands, e.g., based on
the place personalities proposed by Tanasescu et al. [17]. Next steps will also involve
other methods of delineating class types, e.g., using a combination of color ramps to
visually represent combinations of class probabilities and uncertainty.
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